

DRCN 2016 9

Multi-Layer Netwo	ork Design 🛛 🌘	
• Model I: Duplicate Logical Link model $\underset{minimize}{\text{minimize}} \sum \sum \sum (X_{ij}^{st,\phi} + Y_{ij}^{st,\phi})$	OBJECTIVE Minimize total resources	(5)
$\begin{array}{ccc} X_{ij}^{A_i,\psi},Y_{ij}^{A_i,\psi} & \phi & ij \in E_p \ st \in E_L \\ \text{s.t.} \end{array}$	Winimize total resources	
$\sum_{kt \in EL} Z_{kt}^{d_{\phi}^{mn}} - \sum_{sk \in EL} Z_{sk}^{d_{\phi}^{mn}} = \begin{cases} d_{\phi}^{mn} & \text{if } k = m \\ -d_{\phi}^{mn} & \text{if } k = n \\ 0 & \text{otherwise} \end{cases}$	$,\forall k\in V_L,d_{\phi}^{mn}$	(6)
$\label{eq:constraint} \underbrace{\begin{array}{c} \text{mapping on-the-spine} \\ \text{with aggregate BW} \end{array}}_{ik\in E_S} X_{ik}^{st,\phi} - \sum_{kj\in E_S} X_{kj}^{st,\phi} = \begin{cases} w_\phi^{st} & \text{if } k = s \\ -w_\phi^{st} & \text{if } k = t \\ 0 & \text{otherwise} \end{cases}$	$,\forall k\in V_{S},\phi=1$	(7)
$\begin{array}{ c c c }\hline & & \\ \hline \\ \hline$	$, \forall k \in V_P, \phi \neq 1$	(8)
$\sum_{ik \in E_P} Y_{ik}^{st,\phi} - \sum_{kj \in E_P} Y_{kj}^{st,\phi} = \begin{cases} w_{\phi}^{st} & \text{if } k = s \\ -w_{\phi}^{st} & \text{if } k = t \\ 0 & \text{otherwise} \end{cases}$	$, \forall k \in V_P, \phi = 1$	(9)
Class-1 mapped to disjoint path-pair $X_{ij}^{st,\phi} + Y_{ij}^{st,\phi} \leq w_{\phi}^{st}$	$, \forall (i,j) \in E_P, (s,t) \in E_L, \phi$	(10)
$\sum_{st \in E_L} \sum_{\phi} (X_{ij}^{st,\phi} + Y_{ij}^{st,\phi}) \leq c_{ij}$	$, \forall (i,j) \in E_P$	(11)
$\label{eq:logical_link} \mbox{Logical link capacity} \qquad \sum_{mn} \sum_{\phi} Z_{st}^{d_{qm}^m} \leq W_{st}$	$, \forall (s,t) \in E_L$	(12)
$\sum_{mn} Z_{st}^{d_{mn}^{mn}} = w_{\phi}^{st}$	$,\forall (s,t)\in E_{L},\phi$	(13)
$X_{ij}^{st,\phi} \ge 0 \qquad, Y_{ij}^{st,\phi} \ge 0, \qquad Z_{st}^{d_{\phi}^{mn}} \ge 0$		(14)
DRCN 2016 10		

DRCN 2016 13

]	Nu	me	eric	al	Re	esu	lts				(
Ava	ailabi	litv/	Dow	ntime	Los	rical	Link	resu	lts [.]							
1110	• T	inke	on th	e cnir		= 000) link	re off	snine	a =	00					
	• I	orgo	diffo	c spin	botu	-	, IIIK	and '	spine	$u_0 -$.))					
	• 1		1.00	ence	·		1455 1		<u>_</u> !	1			1	•		
	• >	light	diffe	rence	in cla	ass I I	result	s for	spine	- lar	ger in	npact	on cl	ass 2		
	• P	resel	ectioi	n of lo	ogical	links	s to sp	ine ii	mprov	ves cl	ass I					
Scenario	Problem	regular	total no. of	preselected	Average	e logical link e ime Class-1 (expected hrs/yr)	Average logical link expected downtime Class-2 (hrs/yr)			Maximum logical link expected downtime class-1 (hrs/yr)			Maximum logical link expected downtime Class-2 (hrslyr)		
	type	degree k	logical links	logical links	s,	\$,	S,	S,	s,	s,	s,	S,	s,	\$,	s,	S,
1	-	3	36	no	0.42	0.47	0.45	62	65	69	1.0	1.3	1.1	142.1	250.2	173.0
2	gica	3	36	yes	0.34	0.35	0.33	40	56	40	1.2	1.5	1.1	138.4	320.9	182.
3	orko	4	48	no	0.43	0.48	0.46	63	69	64	1.1	1.4	1.2	142.1	250.2	174.2
4	a to	4	48	yes	0.36	0.41	0.41	49	69	48	1.2	1.6	1.4	161.9	322.1	182.9
5	10	5	60	no	0.41	0.45	0.44	64	76	64	1.1	1.5	1.2	134.6	275.9	207.
6		5	60	yes	0.39	0.46	0.41	59	76	58	1.2	1.7	1.1	161.9	333.0	203.7
7	*	4	24	no	0.37	0.40	0.41	73	86	84	0.8	1.0	1.0	143.3	251.5	171.
8	O M	4	24	yes	0.27	0.39	0.33	63	68	62	0.8	1.5	1.1	128.5	226.8	192.
9	a l	5	30	no	0.36	0.44	0.33	72	71	62	1.0	1.3	1.1	116.1	202.4	192.0
10	Dica	5	30	yes	0.39	0.53	0.41	58	55	70	1.2	1.7	1.5	118.5	191.5	181.6
11	partitioned los	6	36	no	0.39	0,44	0.47	68	76	66	1.1	1.3	1.4	150	224	158
12		6	36	yes	0.41	0,49	0.48	50	56	57	1.3	1.5	1.4	104	178	168
13		7	42	no	0.40	0.47	0.47	70	77	73	1.1	1.5	1.4	142	228	173
14		7	42	yes	0.42	0.52	0.46	63	61	69	1.2	1.6	1.3	153	182	168

Ava	ailabi • L • L	lity/l Links Large	Dowr on the differ	ntime e spine ence l	Nu Log $a_s =$	me ical H .999 en cla	End-t End-t , links ass 1	al o-En s off s and 2	Re d Flo pine a	sul ws re $a_0 = .$	ts esults 99	:			(
Scanario	Problem type	regular graph	gular total no. of	preselected	Average f	low expected Class-1 (hrs/y	downtime r)	Average flow expected downtime Class-2 (hrs/yr)			Maximum	expected flow class-1 (hrs/y	w downtime rr)	Maximum expected flow downti Class-2 (hrs/yr)		
		degree k	logical links	logical links	S ,	\$ ₂	S ₁	<i>S</i> ,	S,	S,	<i>S</i> ,	8 ₂	s,	S ,	S ₁	S ₁
1	-	3	36	no	0.78	0.87	0.85	118	123	133	1.9	2.3	2.0	287	432	385
2	gica	3	36	yes	0.53	0.43	0.44	54	42	42	1.5	1.7	1.4	177	333	215
3	duplicated lo	4	48	no	0.62	0.68	0.67	102	102	94	1.6	1.7	1.6	260	352	28
4		4	48	yes	0.49	0.46	0.48	62	53	53	1.5	1.8	1.7	185	334	21
5		5	60	no	0.50	0.53	0.52	89	99	85	1.3	1.5	1.4	230	372	260
6		5	60	yes	0.46	0.47	0.46	71	67	66	1.3	1.7	1.3	200	333	264
7	¥	4	24	no	0.83	0.92	0.98	216	239	239	2.0	2.3	2.5	467	645	52
8	two.	4	24	yes	0.59	0.73	0.63	178	188	170	1.6	2.2	1.9	389	491	44
9	- I	5	30	no	0.59	0.68	0.66	180	174	161	1.5	1.7	1.7	403	421	388
10	Bica	5	30	yes	0.56	0.71	0.57	150	117	151	1.6	2.0	1.8	341	368	409
11	artitioned lo	6	36	no	0.53	0.58	0.60	154	130	134	1.3	1.6	1.6	388	451	332
12		6	36	yes	0.52	0.59	0.55	111	87	109	1.4	1.7	1.5	277	343	30
13		7	42	no	0.50	0.53	0.54	122	116	135	1.3	1.6	1.6	283	385	34
14	ä	7	42	Ves	0.48	0.56	0.49	114	90	122	1.2	1.7	1.5	276	306	35

