Motivation

- Customers have a range of availability requirements
 - Consumer Internet access (.93 - .95) ➔ customers happy
 - Most businesses subscribe to .999 or less type service
 - Emerging applications: Smart Grid, Emergency Communications, Telemedicine — need .99999 or greater end to end.
 - ONLY a SMALL Fraction of Users/Traffic need high levels of availability and are willing to PAY for it!
 - However high availability traffic derives the design ➔ free rider scenario

- Network Operators provide differentiated Quality of Resilience (QoR) classes
 - Categorize services into QoR classes (Bronze, Silver, Gold)
 - Each QoR class different levels of protection and routing
 - Gold: 1+1 dedicated path protection
 - Silver: Shared backup path protection
 - Bronze: No Protection
 - If not reliable enough — additional protection, redundant protection across layers
Highly Available Spine

• Spine Concept
 – High availability must begin at physical layer and work it’s way up
 – Spine: embed a higher availability subnetwork into the physical layer providing a basis for QoR
 – Highest class of QoR WP or BP routed on SPINE

Nodes, link interfaces and links on Spine have higher availability

Other links and nodes lower availability

Highly Available Spine

• How to provide availability differentiation for components on spine versus those off spine?
• Equipment differentiation
 – Vendors claim can get a range of availabilities by equipment arrangement/configuration and cost (e.g. hot standby line card, redundant fans, redundant backplane, etc) (.99 - .999997)
• Equipment Site differentiation
 – Situate Spine equipment to increase MTTF - longer back up power supplies, better heating/cooling, stronger outside cabinets, etc
 – Underground links versus above ground, etc.
• Reduce MTTR along Spine (5% - 25% in other industries)
 – Follow best practices and training procedures (NRIC, FCC)
 – Pre-position spare parts/equipment
 – Assign most experienced staff to OAM Spine portion of network
 – Ex. WDM OXC 99.994% → (99.9943% - 99.9955%)
Spine Concept

- Improve overall availability by making strong stronger in parallel systems
- Example
 - Let all the links have the same availability a
 - Spine in red

 spine links $a_{S} = a + \Delta$

 off spine links $a_{o} = a - \Delta$

 - A_{S} average end to end flow availability
 - One hop working path, two hop backup path

Case	A_{S}	Downtime (hours/year)
$a = 0.9$, $\Delta = 0$	0.981	166.44
$a = 0.9$, $\Delta = 0.09$	0.99712	25.23756
$a = 0.9$, $\Delta = 0.099$	0.999701	2.61749

Multi-layer Network Model

- Two layer network: physical $G_{P} = (V_{P}, E_{P})$, logical $G_{L} = (V_{L}, E_{L})$
- Logical links E_{L} are mapped to paths of physical links E_{P}.
- The spine, G_{S} is defined as $V_{S} \subseteq V_{P}$ and $E_{S} \subseteq E_{P}$.
 - For full connectivity \Rightarrow spine is min spanning tree (MST) i.e., $|E_{S}| = |V_{P}| - 1$.
- Demands, D_{ϕ}, routed at the logical layer
Multi-layer Network Model

• Logical routing should isolate traffic of different QoR classes
 – Results in multiple logical networks, one for each class.

• class-1 ($\phi = 1$) requires high availability levels

• Flows are routed on logical links mapped to a fully disjoint working and backup path-pair in physical network, one of which is restricted to be on the spine.

Multi-layer Network Model

• class-2 ($\phi = 2$) has no strict availability requirements.
 • Flows of class-2 are routed freely on the network with no protection
Multi-Layer Design Problems

- Two optimization models developed
 - Model I: Duplicate logical links
 - Assume each class has the same set of logical links that are duplicated for exclusive use of each class.

- Model II: Partitioned logical network
 - Classes do not necessarily have identical logical networks.
 - Logical network is partitioned into two sub-networks, each network must be capable of carrying all demands of its class.

Multi-Layer Network Design

- Model I: Duplicate Logical Link model

\[
\begin{align*}
\text{minimize} & \quad \sum_{i \in E_L} \sum_{k \in C_L} \left(X_{ik}^{\text{in}} + Y_{ik}^{\text{in}} \right) \\
\text{subject to} & \quad \sum_{i \in E_L} \sum_{k \in C_L} \left(X_{ik}^{\text{in}} + Y_{ik}^{\text{in}} \right) = \sum_{i \in E_L} \sum_{k \in C_L} \left(X_{ik}^{\text{in}} + Y_{ik}^{\text{in}} \right) \\
& \quad \sum_{i \in E_P} \sum_{k \in C_L} \left(X_{ik}^{\text{in}} - Y_{ik}^{\text{in}} \right) = \sum_{i \in E_P} \sum_{k \in C_L} \left(X_{ik}^{\text{in}} - Y_{ik}^{\text{in}} \right) \\
& \quad \sum_{i \in E_P} \sum_{k \in C_L} \left(Y_{ik}^{\text{in}} - X_{ik}^{\text{in}} \right) = \sum_{i \in E_P} \sum_{k \in C_L} \left(Y_{ik}^{\text{in}} - X_{ik}^{\text{in}} \right) \\
& \quad \sum_{i \in E_P} \sum_{j \in L_P} \left(X_{ij}^{\text{in}} + Y_{ij}^{\text{in}} \right) \leq e_{ij} \\
& \quad \sum_{i \in E_L} \sum_{j \in L_L} \left(X_{ij}^{\text{in}} + Y_{ij}^{\text{in}} \right) \leq e_{ij} \\
& \quad \sum_{i \in E_L} \sum_{j \in L_L} \left(X_{ij}^{\text{in}} + Y_{ij}^{\text{in}} \right) \geq 0, \quad X_{ij}^{\text{in}} \geq 0, \quad Z_{ik}^{\text{in}} \geq 0
\end{align*}
\]

\text{OBJECTIVE}
Minimize total resources

\[
\begin{align*}
& \quad \sum_{i \in E_L} \sum_{k \in C_L} \left(X_{ik}^{\text{in}} + Y_{ik}^{\text{in}} \right) \\
& \quad \sum_{i \in E_P} \sum_{k \in C_L} \left(X_{ik}^{\text{in}} - Y_{ik}^{\text{in}} \right) = \sum_{i \in E_P} \sum_{k \in C_L} \left(X_{ik}^{\text{in}} - Y_{ik}^{\text{in}} \right) \\
& \quad \sum_{i \in E_P} \sum_{k \in C_L} \left(Y_{ik}^{\text{in}} - X_{ik}^{\text{in}} \right) = \sum_{i \in E_P} \sum_{k \in C_L} \left(Y_{ik}^{\text{in}} - X_{ik}^{\text{in}} \right) \\
& \quad \sum_{i \in E_P} \sum_{j \in L_P} \left(X_{ij}^{\text{in}} + Y_{ij}^{\text{in}} \right) \leq e_{ij} \\
& \quad \sum_{i \in E_L} \sum_{j \in L_L} \left(X_{ij}^{\text{in}} + Y_{ij}^{\text{in}} \right) \leq e_{ij} \\
& \quad \sum_{i \in E_L} \sum_{j \in L_L} \left(X_{ij}^{\text{in}} + Y_{ij}^{\text{in}} \right) \geq 0, \quad X_{ij}^{\text{in}} \geq 0, \quad Z_{ik}^{\text{in}} \geq 0
\end{align*}
\]

\text{Minimize total resources}
Multi-Layer Network Design

- Model II: Partitioned Logical Link model
- Modify Model I by adding the constraints below
 \[ILP \text{ problem} \ - \text{problems solved in CPLEX} \]

\[\begin{align*}
 \sum_{\text{max}} Z_{sl}^{\text{cl}} - M \xi_{st} & \leq 0, \quad \forall (s, t) \in E_L, \phi = 1 \\
 \sum_{\text{max}} Z_{sl}^{\text{cl}} - M(1 - \xi_{st}) & \leq 0, \quad \forall (s, t) \in E_L, \phi = 2 \\
 \xi_{st} & \in (0, 1) \text{ is binary}
\end{align*} \]

Numerical Results

- Evaluate Multi-Layer Network Design Models
- Consider Polska network as physical network: 12 nodes – 18 links
- Logical layer
 - generate a number of \(k \)-regular random graphs using \(k = 3, 4, 5, 6, \) and 7.
 - random, or random with a preselected set of links mapped to spine

\[\Delta \] = max average WP-BP disjoint path-pair availability
\[S_2 \] = maximizes the average WP path availability on the spine.
\[S_1 \] = a compromise solution
Numerical Results

- For each spine, we ran 14 scenarios
 - Duplicate logical network: 6 scenarios
 - Partitioned logical network: 8 scenarios
 - Each scenario repeated 7 times – results averaged

- Full mesh of upper layer flows with single unit demand for each class ($d^{mn}_{\phi} = 1$; for all mn) 50/50 traffic split

- Averaged results compared in terms of
 - resource use: amount of reserved physical capacity required to realize the logical links
 - logical link downtime per class
 - end-to-end flow downtime per class

Numerical Results

- Availability/Downtime Logical Link results:
 - Links on the spine $a_s = .999$, links off spine $a_O = .99$
 - Large difference between class 1 and 2!
 - Slight difference in class 1 results for spine – larger impact on class 2
 - Preselection of logical links to spine improves class 1

Table:

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Problem type</th>
<th>regular graph degree</th>
<th>total no. of logical links</th>
<th>prescheduled logical links</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>3</td>
<td>36</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3</td>
<td>36</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>4</td>
<td>48</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4</td>
<td>48</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5</td>
<td>60</td>
<td>no</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>5</td>
<td>60</td>
<td>yes</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>4</td>
<td>24</td>
<td>no</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>4</td>
<td>24</td>
<td>yes</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>5</td>
<td>30</td>
<td>no</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>5</td>
<td>30</td>
<td>yes</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>6</td>
<td>36</td>
<td>no</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>6</td>
<td>36</td>
<td>yes</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>7</td>
<td>42</td>
<td>no</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>7</td>
<td>42</td>
<td>yes</td>
</tr>
</tbody>
</table>
Numerical Results

- Availability/Downtime Logical End-to-End Flows results:
 - Links on the spine $a_s = .999$, links off spine $a_o = .99$
 - Large difference between class 1 and 2!

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Problem type</th>
<th>links on spine</th>
<th>total no. of logical links</th>
<th>Average flow expected downtime Class 1 (hour)</th>
<th>Average flow expected downtime Class 2 (hour)</th>
<th>Maximum expected flow downtime Class 1 (hour)</th>
<th>Maximum expected flow downtime Class 2 (hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>36</td>
<td>36</td>
<td>0.78</td>
<td>0.77</td>
<td>118</td>
<td>123</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>36</td>
<td>36</td>
<td>0.83</td>
<td>0.82</td>
<td>182</td>
<td>185</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>36</td>
<td>36</td>
<td>0.62</td>
<td>0.68</td>
<td>102</td>
<td>102</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>36</td>
<td>36</td>
<td>0.49</td>
<td>0.46</td>
<td>50</td>
<td>51</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>36</td>
<td>36</td>
<td>0.20</td>
<td>0.25</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>36</td>
<td>36</td>
<td>0.46</td>
<td>0.47</td>
<td>71</td>
<td>71</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>24</td>
<td>24</td>
<td>0.63</td>
<td>0.64</td>
<td>218</td>
<td>219</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>24</td>
<td>24</td>
<td>0.59</td>
<td>0.59</td>
<td>178</td>
<td>178</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>24</td>
<td>24</td>
<td>0.89</td>
<td>0.89</td>
<td>181</td>
<td>181</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>24</td>
<td>24</td>
<td>0.86</td>
<td>0.77</td>
<td>152</td>
<td>152</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>24</td>
<td>24</td>
<td>0.53</td>
<td>0.53</td>
<td>124</td>
<td>124</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>24</td>
<td>24</td>
<td>0.52</td>
<td>0.55</td>
<td>111</td>
<td>117</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>24</td>
<td>24</td>
<td>0.89</td>
<td>0.89</td>
<td>132</td>
<td>132</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>24</td>
<td>24</td>
<td>0.88</td>
<td>0.88</td>
<td>114</td>
<td>114</td>
</tr>
</tbody>
</table>

Slight differences in total resource efficiency across the spines.

Some what larger differences on class-1 WP depends heavily on the spine topology.

Preselected logical Links scenarios requires less resources - affected by the logical topology layout.
Numerical Results

- Results compared against no-spine baseline model
- Downtime
 - Class-2
 - Links/flows have same results
 - Class-1
 - Downtimes for class-1 10X orders more than the spine model.
- Resources
 - Spine approach can use non-shortest path routing ➔ more resources
 - Percentage of increase in resources when using the spine can be as low as 0.8% depending on spine and logical topology

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Average Class-1 logical link downtime (hr/yr)</th>
<th>Average Class-1 flow expected downtime (hr/yr)</th>
<th>Maximum Class-1 logical link downtime (hr/yr)</th>
<th>Maximum Class-1 flow expected downtime (hr/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.1</td>
<td>11.7</td>
<td>14</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>5.5</td>
<td>9.8</td>
<td>14</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>5.9</td>
<td>7.2</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>3.0</td>
<td>13.1</td>
<td>12</td>
<td>54</td>
</tr>
<tr>
<td>9</td>
<td>3.7</td>
<td>10.1</td>
<td>15</td>
<td>23</td>
</tr>
<tr>
<td>11</td>
<td>3.9</td>
<td>8.5</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Average total resources</th>
<th>% Percentage of increase in total resource usage when using the spine</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Spine</td>
<td>S1</td>
<td>S2</td>
</tr>
<tr>
<td>1</td>
<td>964</td>
<td>12.0</td>
</tr>
<tr>
<td>3</td>
<td>1000</td>
<td>11.3</td>
</tr>
<tr>
<td>5</td>
<td>1007</td>
<td>12.1</td>
</tr>
<tr>
<td>7</td>
<td>1223</td>
<td>9.0</td>
</tr>
<tr>
<td>9</td>
<td>918</td>
<td>9.1</td>
</tr>
<tr>
<td>11</td>
<td>863</td>
<td>7.8</td>
</tr>
</tbody>
</table>

Numerical Results

- Resources
 - Additional resources of spine approach depends on ratio of highest QoR class to lower classes
 - Would expect highest QoR class traffic to be small percentage of traffic
 - Vary ratio of QoR1/QoR2
 - Decrease in additional spine resources

<table>
<thead>
<tr>
<th># scenario</th>
<th>Traffic rate</th>
<th>Class-1 demand</th>
<th>Class-2 demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>5820</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>2575</td>
<td>0.5</td>
<td>1.5</td>
</tr>
<tr>
<td>43</td>
<td>2080</td>
<td>0.3</td>
<td>1.3</td>
</tr>
<tr>
<td>44</td>
<td>1090</td>
<td>0.2</td>
<td>1.1</td>
</tr>
<tr>
<td>45</td>
<td>6525</td>
<td>0.1</td>
<td>1.1</td>
</tr>
</tbody>
</table>

DRCN 2016 18
Summary

• Quality of Resilience Classes in multi-layer networks
 – Deploy high available spine to create heterogeneous availability subnetworks at the physical layer to lay a basis for differentiation.
 • Spine created by component MTTF and MTTR differentiation
 – Cross layer mapping schemes to transfer differentiation capability to upper layers providing multiple logical networks with diverse QoR

• Two Network Design Models Developed
 – Duplicate links, Partitioned Networks
 – Numerical results show it widens the range of availability levels compared to existing techniques.
 – Effectiveness depends on
 • the layout of the logical layer
 • the spine used
 • the percentage of highest QoR class traffic

• Future work: restoration at top layer, optimum spine selection for multilayer network