
Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

On improving recovery performance in erasure
code based geo-diverse storage clusters

Udaya Parampalli

In Collaboration With: Pablo Iganacio Serrano Caneleo, Lakshmi J Mohan, and
Dr.Aaron Harwood

University of Melbourne, Australia

DRCN, March 2016, Paris

Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

1 Motivation
Geo-distributed storage clusters with erasure codes
Repair problem with an example
Our contribution

2 MXOR code design
3 Supplementing ideas

Location Awareness
Parity Replication

4 Experimental Cluster
NeCTAR cluster
Impact of Parity replication in the test cluster

5 Results and Analysis
Average Recovery times
Improvement with parity replication

6 Related Work
Regenerative Codes
Model: Codes with regeneration

7 Conclusion and Open problems

Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

Geo-distributed storage clusters with erasure codes

Most cloud service providers are building geo-distributed
network of data centers that have their data nodes spanning
wide geographical areas.

These process huge volumes of data that require data
resiliency.

Data centres now use erasure codes in place of default
replication for providing fault-tolerance for archival type data.

Erasure coded storage offers same or better resilience to data
node failures as compared to replication at a reduced storage
overhead.

Handling node failures is difficult in coded systems since it
consumes network traffic (repair bandwidth) involved in
downloading the required data.

This becomes more complex in a geo-diverse environment.

Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

Repair problem with an example

Location1 Location2 Location3

Example storage system spanning three locations
coded using a (4,2) erasure code

Parity block

Source block

Stripe

Figure: Before failure

Location1 Location2 Location3

A Node in Location2 fails and the repair process
consumes network bandwidth

Recovery Worker

Figure: After failure of a node

Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

Our contribution

We present an XOR-based erasure coding technique

Supplement it with topology awareness and parity duplication

Compare with Facebook’s RS codes and XORBAS local parity
codes on a nation-wide cluster, which runs on Apache Hadoop

While the storage requirement of the cluster increases, the
idea results in decreased recovery time and recovery
bandwidth, making it a better choice for large data centers

Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

Our contribution

Storage using erasure codes

Figure: Nodes are distributed and connected by a network

Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

Our contribution

Figure: Facebook (10,4) RS code

Figure: XORBAS local parity code

XORBAS: Maheswaran Sathiamoorthy, Megasthenis Asteris, Dimitris S. Papailiopoulos, Alexandros G. Dimakis,

Ramkumar Vadali, Scott Chen, and Dhruba Borthakur. Xoring elephants: Novel erasure codes for big data.

PVLDB, 6(5):325–336, 2013

Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

Belongs to the class of block array codes

A simple code design which takes a single stripe of source
blocks (amounting to 10 blocks)

Rearranges the ten blocks into two rows of five blocks each

Computes five vertical XOR parity blocks and two horizontal
parity blocks, resulting in a total of seven parity blocks

Very efficient in handling one node failures which involves the
download of two of the surviving nodes

data1 data2 data3 data4 data5

data6 data7 data8 data9 data10

parity1 parity2 parity3 parity4 parity5

parity6

parity7

+ + + + +

++

+

Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

Location Awareness

Hadoop can be made location-aware by specifying the
extending the idea of rack awareness

Done via a script and making corresponding changes in the
configuration files

Without location awareness, the block replicas of the file are
placed randomly, according to the default block placement
policy

Introducing location-awareness ensures that blocks placement
happens exactly the way it is expected to as per the policy

Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

Parity Replication

Inspired by the default replication strategy relied on by
Hadoop for storing hot-data

More copies of parities increases the chances of locality in a
geo-diverse cluster setting

Store two replicas of parities with the aim of bringing down
the time taken for reconstruction from node failure.

Code Replication Storage
Overhead

Hadoop Reed
Solomon

2 1.8x

XORBAS LRC 2 2.2x
MXOR 2 2.4x

Table: Impact of Double Replicating parities in various codes

Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

NeCTAR cluster

Spanning three locations across Australia on the NeCTAR
(National e-Research Collaboration Tools and Resources)
research cloud
15 data nodes per location, total of 45 nodes
Master node is located at Tasmania zone
Primary metric used for evaluating the recovery performance
is the recovery time (the total of read time, decode time and
waiting time), along with the bytes read

Data Nodes

Data Nodes

Data Nodes

Master Master

37 ms

0.7 ms

46 ms

Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

Impact of Parity replication in the test cluster

For RAIDed source blocks, the replication is set to 1

It is followed by the deletion of extra copies from the file
system

Metareplicated copies of the parity blocks are placed as per
the default block placement policy of HDFS

Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

Impact of Parity replication in the test cluster

With the parity block assignment as per the table, the
recovery worker node assignment in Tasmania is the best case.
Even if the recovery worker node is selected from the other
two locations namely Queensland and Tasmania, there is still
a 50% chance of the required parity block being present at the
same location
i.e. It results in locality of parity blocks, leading to faster
recovery

Parity
Block

Tasmania Queensland Perth

P1 X X
P2 X X
P3 X X
P4 X X
P5 X X
P6 X X

Table: Placement of Double Replicated parities in XORBAS

Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

FB RS XORBAS LRC MXOR

R
ec

ov
er

y
du

ra
tio

n
in

 n
an

os
ec

on
ds

 w
ith

ou
t

ra
ck

 a
w

ar
en

es
s

an
d

pa
rit

y
re

pl
ic

at
io

n

#104

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2 Reading Time
Decoding Time
Waiting Time

(a) With no topology awareness and no
parity replication

FB RS XORBAS LRC MXOR

R
ec

ov
er

y
du

ra
tio

n
in

 n
an

os
ec

on
ds

 w
ith

ra
ck

 a
w

ar
en

es
s

an
d

no
 p

ar
ity

 r
ep

lic
at

io
n

#104

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2 Reading Time
Decoding Time
Waiting Time

(b) With only topology awareness and no
parity replication

Figure: Recovery performance

In the absence of topology, the efficiency of XORBAS is
affected by the distance between the nodes

Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

FB RS XORBAS LRC MXOR

R
ec

ov
er

y
du

ra
tio

n
in

 n
an

os
ec

on
ds

 w
ith

ra
ck

 a
w

ar
en

es
s

an
d

pa
rit

y
re

pl
ic

at
io

n

#104

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2 Reading Time
Decoding Time
Waiting Time

Figure: With both topology awareness and parity replication

MXOR codes perform faster recovery as compared to FB RS
codes and XORBAS LRC codes

XORBAS LRC in our set-up is observed to perform confirming
the claimed performance with a decrease in repair times by
25% as compared to FB RS.

Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

Average Recovery times

Various Codes
FB RS XORBAS LRC MXOR

A
ve

ra
ge

 R
ec

ov
er

y
T

im
es

#104

0

0.5

1

1.5

2

2.5

3

3.5

4

No topology awareness and no parity replication
With topology awareness and no parity replication
With both topology awareness and parity replication

Figure: Average recovery times of codes under different settings

Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

Improvement with parity replication

Code Recovery
Time with
replication

Recovery
Time with-
out replica-
tion

Improvement

FB RS 27,039 28,778 6.04%
XORBAS
LRC

20,375 21,887 6.91%

MXOR 9,904 10,920 -10.25%

Table: Improvement in recovery performance with parity replication

MXOR codes do not gain benefit with metareplication

It requires downloading only one parity block for recovery,
hence having extra copies of parities becomes very less
relevant

Also, Hadoop involves internal computation for choosing
parity blocks from the available replicas, which is not
beneficial for MXOR codes

Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

Improvement with parity replication

Scheme with torage Overhead
FB RS (1.4x) XORBAS LRC (1.6x) MXOR (1.7x)

H
D

F
S

 M
eg

aB
yt

es
R

ea
d

fo
r

re
co

ve
ry

0

100

200

300

400

500

600

700

800

900

(a) Storage Overhead vs. MegaBytes
Read

Scheme with torage Overhead
FB RS (1.4x) XORBAS LRC (1.6x) MXOR (1.7x)

C
P

U
 ti

m
e

in
 s

ec
on

ds
 ta

ke
n

by
 th

e
re

co
ve

ry
 w

or
ke

r

0

5

10

15

20

25

(b) Storage Overhead vs. CPU time

Figure: Bytes read and CPU times Vs. Storage overhead

Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

New Developments

Two recently considered codes have sprungup specificaly to
address exact node repairs in DSS:

Regenerative Codes: focus on the need to minimize the
amount of data download needed for node repair.

Codes with Locality: focus on need to minimize the number
of nodes from which data is accessed for node repair.

Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

Regenerative Codes

How many blocks do you need to download to repair the
failed node?

Figure: Example

Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

Regenerative Codes

2 nodes are enough recreate;3 blocks are sufficient

Figure: Example

Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

Regenerative Codes

Repairing the last node

Figure: Example

Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

Model: Codes with regeneration

B ≤
k−1∑
i=0

min{α, (d − i)β}. (1)

A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran, Network Coding for Distributed

Storage Systems,âœ IEEE Trans. Inform. Th., Sep. 2010.

Figure: Regenerating Codes

Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

Model: Codes with regeneration

Bandwidth and Storage Trade-off

B ≤
k−1∑
i=0

min{α, (d − i)β}. (2)

Figure: Extreme points: MSR and MBR

Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

Model: Codes with regeneration

Current Implementations

Facebook and Microsoft have working implementations.

XORBAS: Maheswaran Sathiamoorthy, Megasthenis Asteris,
Dimitris S. Papailiopoulos, Alexandros G. Dimakis, Ramkumar
Vadali, Scott Chen, and Dhruba Borthakur. Xoring elephants:
Novel erasure codes for big data. PVLDB, 6(5):325–336, 2013

Zigzag, Long MDS, Hadamard Design Based Constructions.

Extensive research is available:
Jie Li, Xiaohu Tang, and Udaya Parampalli. A framework of
constructions of minimum storage regenerating codes with the
optimal update/access property for distributed storage systems
based on invariant subspace technique, IEEE Transactions on
Information Theory, Vol. 61, Issue 4, pp 1920-1932, 2015.

Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

Conclusions and Open problems

An assessment of three popular codes along with two simple
ideas of managing location awareness information and
maintaining additional copies of parities was presented

The results of our study have revealed new facets of erasure
codes when implemented on Hadoop in a geo-distributed
environment

Erasure codes, in particular, are not a silver-bullet solution for
providing reliability

The experimental results confirm that topology awareness and
metareplication improve the recovery performance to some
extent

Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

A better design that takes into account the block placement
policy of both source and parity blocks to suit a geo-diverse
cluster is expected to increase the recovery performance

This is an open problem for future research

Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

About MXOR Implementation

MXOR code was implemented in Java using standard libraries
only. Because the code is a XOR-based code there was no
need of special libraries or classes to perform GF arithmetic.

@Override

public void encode(int[] message, int[] parity) {

assert(message.length == stripeSize && parity.length == paritySize);

int cols = paritySize;

// init the code values

for (int i = 0; i < cols; i++)

parity[i] = message[i];

// xor the rest properly

for (int i = cols; i < stripeSize; i++)

parity[i % cols] ^= message[i];

}

Compilation was made using the standard compilation process
available in Hadoop-0.20 and its components. This process
utilises ANT to organise dependencies and build the jar files.

ant package -Ddist.dir = $HADOOP HOME/build

Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

Topology changes and Rack Awarness

To perform the rack awareness we utilised the default method
to specify a particular topology in Hadoop. This method is
based on a script and a text file where the pair {machine, IP}
is declared.
127.0.0.1 rack-01

localhost rack-02

10.0.0.1 rack-01

The script was written in bash, based on several community
scripts. It works reading the file, indicating to Hadoop how to
build the topology in a hierarchical order.
<property>

<name>topology.script.file.name</name>

<value>/usr/local/hadoop/conf/rack_topology.sh</value>

<description>This is the script that Hadoop will use to identify the

network layout proposed by the network admin. Note that must be

executed receiving just 1 IP as input parameter.</description>

</property>

Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

Parity replication

Parity replication was achieved through changes in the config
files only. A better block placement policy could improve this
step, because now it’s Hadoop who decides where in the
cluster the copies must be placed.
<property>

<name>raid.config.file</name>

<value>/media/HDFS/app/hadoop/conf/raid.xml</value>

<description>This is needed by the RaidNode </description>

</property>

Outline Motivation MXOR code design Supplementing ideas Experimental Cluster Results and Analysis Related Work Conclusion and Open problems

XORBAS codes:Lessons learnt

XORBAS is a class of novel codes, based on locally repairable
codes, that was built upon the Reed-Solomon codes in
HDFS-RAID module.

XORBAS results in 2x decrease in the repair traffic because of
the idea of locality.

Our experimental cluster had its nodes spread across five
different locations around Australia.

The source blocks and parity blocks were placed according to
the default block placement policy of Hadoop.

This is precisely why inspite of having local parities, a
decrease of just 5% in the repair time was noticed.

	Motivation
	Geo-distributed storage clusters with erasure codes
	Repair problem with an example
	Our contribution

	MXOR code design
	Supplementing ideas
	Location Awareness
	Parity Replication

	Experimental Cluster
	NeCTAR cluster
	Impact of Parity replication in the test cluster

	Results and Analysis
	Average Recovery times
	Improvement with parity replication

	Related Work
	Regenerative Codes
	Model: Codes with regeneration

	Conclusion and Open problems

