Mixed-Integer Optimization for the Combined capacitated Facility Location-Routing Problem

Dimitri Papadimitriou¹, Didier Colle², Piet Demeester² dimitri.papadimitriou@nokia.com, didier.colle@ugent.be, pdemeester@ugent.be

> ¹Bell Labs - Nokia (Antwerp, Belgium) ²INTEC - Ghent University (Gent, Belgium)

> > DRCN 2016 - Paris March 15-17, 2016

Overall Picture

j=3 j=4 j=5 j=5

Model (1)

capacitated Facility Location Problem (cFLP)

- Graph $G = (\mathcal{V}, \mathcal{E})$ where vertex set \mathcal{V} represents
 - Demand originating points $\mathcal{I}\subseteq \mathcal{V}$
 - Set of potential facility locations (sites) $\mathcal{J}\subseteq \mathcal{V}$
- $\forall j \in \mathcal{J}$ of finite capacity b_j
 - Facility opening cost φ_j
 - Assignment cost ϖ_{ij} (allocation of demand a_i from customer demand point i)
- Choose subset of potential locations where to install a facility and assign every client *i* with known demand *a_i* to single or to (sub)set of open facilities without exceeding their capacity *b_j*

Model (1)

capacitated Facility Location Problem (cFLP)

- Graph $G = (\mathcal{V}, \mathcal{E})$ where vertex set \mathcal{V} represents
 - Demand originating points $\mathcal{I}\subseteq \mathcal{V}$
 - Set of potential facility locations (sites) $\mathcal{J}\subseteq \mathcal{V}$
- $\forall j \in \mathcal{J}$ of finite capacity b_j
 - Facility opening cost φ_j
 - Assignment cost ϖ_{ij} (allocation of demand a_i from customer demand point i)
- Choose subset of potential locations where to install a facility and assign every client *i* with known demand *a_i* to single or to (sub)set of open facilities without exceeding their capacity *b_j*

Goal

Find set of facilities to open (location) and assign demands to open facilities (allocation) that minimize the sum of

- Opening/installation cost of selected facilities
- Customer demand supplying cost at each facility
- Cost of connecting each customer demand to subset of selected facilities

DRCN 2016 - Paris

Model (2)

Properties

- Hard-capacitated: only one facility may be installed at each location $j \in \mathcal{J}$ with finite capacity b_j
- **2** Multi-source: each client *i* may be served by multiple sources (facilities $j \in \mathcal{J}$)
- Multi-product: each opened facility j offers multiple (k) commodities a.k.a products (e.g., digital/content objects of different types)

Model (2)

Properties

- **()** Hard-capacitated: only one facility may be installed at each location $j \in \mathcal{J}$ with finite capacity b_j
- **2** Multi-source: each client *i* may be served by multiple sources (facilities $j \in \mathcal{J}$)
- Multi-product: each opened facility j offers multiple (k) commodities a.k.a products (e.g., digital/content objects of different types)

Model (3)

Properties

- Symmetric connection/routing cost: optimal solution to client-to-server problem ≡ optimal solution to server-to-client problem
- **Shared-capacity model**:
 - Installed capacity shared among objects hosted by each facility
 - Difference compared to physical goods: single copy of each object hosted at installed facilities even if assigned to multiple customer demands a_i

Model (3)

Properties

Symmetric connection/routing cost: optimal solution to client-to-server problem ≡ optimal solution to server-to-client problem

- Shared-capacity model:
 - Installed capacity shared among objects hosted by each facility
 - Difference compared to physical goods: single copy of each object hosted at installed facilities even if assigned to multiple customer demands a_i

 Conventional cFLP: cost of allocating demand a_i from given customer point i independent of other demands a_i

- Conventional cFLP: cost of allocating demand a_i from given customer point i independent of other demands a_j
- Location-Routing Problem (LRP): combination of cFLP with routing decisions removes allocation independence property
 - \rightarrow Strongly interrelated location and routing decisions

- Conventional cFLP: cost of allocating demand a_i from given customer point i independent of other demands a_j
- Location-Routing Problem (LRP): combination of cFLP with routing decisions removes allocation independence property
 - \rightarrow Strongly interrelated location and routing decisions
 - \Rightarrow Allocation (transportation, routing) cost not limited to graph distance
- When routing topology determined endogenously, more effective to change routing decisions instead of locating new facilities

- Conventional cFLP: cost of allocating demand a_i from given customer point i independent of other demands a_j
- Location-Routing Problem (LRP): combination of cFLP with routing decisions removes allocation independence property
 - \rightarrow Strongly interrelated location and routing decisions
 - \Rightarrow Allocation (transportation, routing) cost not limited to graph distance
- When routing topology determined endogenously, more effective to change routing decisions instead of locating new facilities

- Conventional cFLP: cost of allocating demand a_i from given customer point i independent of other demands a_j
- Location-Routing Problem (LRP): combination of cFLP with routing decisions removes allocation independence property
 - \rightarrow Strongly interrelated location and routing decisions
 - \Rightarrow Allocation (transportation, routing) cost not limited to graph distance
- When routing topology determined endogenously, more effective to change routing decisions instead of locating new facilities

Main idea

- Combination of multi-source multi-product capacitated facility location problem (MSMP-cFLP) for digital goods with flow routing problem: MSMP-cFLFRP
- $\bullet \ \ \text{Modeled and solved independently} \rightarrow \text{Modeled and solved simultaneously}$

Reliable Facility Location vs. MSMP-cFLFRP

• Demands protection (Snyder2005): RFLP (and capacitated RFLP)

Reliable Facility Location vs. MSMP-cFLFRP

• Demands protection (Snyder2005): RFLP (and capacitated RFLP)

• Demands rerouting (this paper): MSMP-cFLFRP

Input: Data and Parameters

Data

- Finite graph $G = (\mathcal{V}, \mathcal{E})$ with edge set \mathcal{E} and vertex set \mathcal{V}
 - Set of demand originating points $\mathcal{I}\subseteq\mathcal{V}$
 - Set of potential facility locations $\mathcal{J} \subseteq \mathcal{V}$
- Set \mathcal{K} ($|\mathcal{K}| = \mathcal{K}$): family of products (commodities) that can be hosted by each facility $j \in \mathcal{J}$ ($|\mathcal{J}| = J$)
- Demand set \mathcal{A}
 - a_{ik} : size of requested product of type $k \in \mathcal{K}$ initiated by customer demand point $i \in \mathcal{I} \subseteq \mathcal{V}$
 - Total demand over all product types $k \in \mathcal{K}$: $A = \sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} a_{ik}$

Input: Data and Parameters

- Finite graph $G = (\mathcal{V}, \mathcal{E})$ with edge set \mathcal{E} and vertex set \mathcal{V}
 - Set of demand originating points $\mathcal{I}\subseteq\mathcal{V}$
 - Set of potential facility locations $\mathcal{J} \subseteq \mathcal{V}$
- Set \mathcal{K} ($|\mathcal{K}| = \mathcal{K}$): family of products (commodities) that can be hosted by each facility $j \in \mathcal{J}$ ($|\mathcal{J}| = J$)
- Demand set \mathcal{A}
 - a_{ik} : size of requested product of type $k \in \mathcal{K}$ initiated by customer demand point $i \in \mathcal{I} \subseteq \mathcal{V}$
 - Total demand over all product types $k \in \mathcal{K}$: $A = \sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} a_{ik}$

Parameters

- b_j : capacity of facility opened at location $j \in \mathcal{J}$ (storage capacity)
- q_{uv} : nominal capacity of arc (u, v) from node u to v

Variables and Costs

Variables

- Real variable x_{ijk}: fraction of demand a_{ik} requested by customer demand node i for product type k satisfied/served by facility j (opened/installed at u ∈ V)
- Binary variable y_j = 1 if facility j of capacity b_j opened/installed at node u ∈ V (0 otherwise)
- Binary variable z_{jk} = 1 if product type k provided at (opened) facility j (0 otherwise)
- Continuous flow variable f_{uv,ijk}: amount of traffic flowing on arc (u, v) in supply of customer demand i for product k assigned to opened facility j

Variables and Costs

Variables

- Real variable x_{ijk}: fraction of demand a_{ik} requested by customer demand node i for product type k satisfied/served by facility j (opened/installed at u ∈ V)
- Binary variable y_j = 1 if facility j of capacity b_j opened/installed at node u ∈ V (0 otherwise)
- Binary variable z_{jk} = 1 if product type k provided at (opened) facility j (0 otherwise)
- Continuous flow variable f_{uv,ijk}: amount of traffic flowing on arc (u, v) in supply of customer demand i for product k assigned to opened facility j

Cost

- φ_j: cost of opening/installing a facility at site j
- κ_{ijk}: cost of assigning to facility opened at site j the fraction of demand a_{ik} issued by customer demand point i for product k
- τ_{uv} : cost of routing one unit of traffic along arc (u, v)

MIP formulation

Objective function

- **1** Facility location cost: $\sum_{j \in \mathcal{J}} \varphi_j y_j$
- 2 Demand allocation cost: $\sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \sum_{k \in \mathcal{K}} \kappa_{ijk} x_{ijk}$
- **3** Traffic routing cost: $\sum_{(u,v)\in\mathcal{E}} \tau_{uv} \sum_{i\in\mathcal{I}} \sum_{j\in\mathcal{J}} \sum_{k\in\mathcal{K}} f_{uv,ijk}$

MIP formulation

Objective function

- **1** Facility location cost: $\sum_{j \in \mathcal{J}} \varphi_j y_j$
- 2 Demand allocation cost: $\sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \sum_{k \in \mathcal{K}} \kappa_{ijk} x_{ijk}$
- **3** Traffic routing cost: $\sum_{(u,v)\in\mathcal{E}} \tau_{uv} \sum_{i\in\mathcal{I}} \sum_{j\in\mathcal{J}} \sum_{k\in\mathcal{K}} f_{uv,ijk}$

MIP formulation

$$\min \sum_{(u,v)\in\mathcal{E}} \tau_{uv} \sum_{i\in\mathcal{I}} \sum_{j\in\mathcal{J}} \sum_{k\in\mathcal{K}} f_{uv,ijk} + \sum_{j\in\mathcal{V}} \varphi_j y_j + \sum_{i\in\mathcal{I}} \sum_{j\in\mathcal{J}} \sum_{k\in\mathcal{K}} \kappa_{ijk} x_{ijk}$$
(1)

MSMP-cFLP Constraints (1)

• **Demand satisfaction constraints**: demand *a_{ik}* for product type *k* issued by each customer *i* shall be satisfied:

$$\sum_{j\in\mathcal{J}}x_{ijk}=1,i\in\mathcal{I},k\in\mathcal{K},a_{ik}>0$$
(2)

• **Product availability**: product type *k* available on facility *j* only if *j* opened Forbids assigning products to closed facilities:

$$z_{jk} \le y_j, j \in \mathcal{J}, k \in \mathcal{K}$$
(3)

Demand fraction x_{ijk} satisfiable by facility j only if product k available at j
 Forbids delivery from facility j of product type k to demand node i if product type k unavailable at facility j

$$x_{ijk} \le z_{jk}, i \in \mathcal{I}, j \in \mathcal{J}, k \in \mathcal{K}$$
(4)

MSMP-cFLP Constraints (2)

Facility capacity constraints:

• For physical goods (canonical cFLP):

$$\sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} a_{ik} \mathsf{x}_{ijk} \leq b_j y_j, orall j \in \mathcal{J}$$

(5)

MSMP-cFLP Constraints (2)

Facility capacity constraints:

• For physical goods (canonical cFLP):

$$\sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} a_{ik} \mathbf{x}_{ijk} \leq b_j y_j, \forall j \in \mathcal{J}$$
(5)

- For digital goods:
 - Sum of fractions x_{ijk} assigned to opened facility $j \in \mathcal{J}$ does not exceed its max. capacity b_j
 - Set of *d* identical demands (same product type *k* of size *s*) assigned to *j* consumes *s* units of facility capacity at *j* instead of *d*.*s* units

$$\sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} a_{ik} \frac{x_{ijk}}{\sum_{\ell \in \mathcal{L}} x_{\ell jk}} \le b_j y_j, \forall j \in \mathcal{J}$$
(6)

where, $\mathcal{L}(\subseteq \mathcal{I}) \triangleq$ set of identical demands assigned to the same facility *j*

Example

Mar.15-17, 2016 13 / 33

Example

Constraints linking MSMP-cFLP & Flow Routing Problem

Individual flow constraints on arc (u, v): traffic flow associated to customer i demand for product type k (a_{ik}) directed to facility j along arc (u, v)

$$f_{uv,ijk} \leq \min(q_{uv}, a_{ik} x_{ijk}), (u, v) \in \mathcal{E}, i \in \mathcal{I}, j \in \mathcal{J}, k \in \mathcal{K}$$
(7)

Aggregated flow constraints on arc (u, v): load (sum of traffic flows) on individual arcs (u, v) ∈ E does not exceed their nominal capacity q_{uv}

$$\sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \sum_{k \in \mathcal{K}} f_{uv, ijk} \le q_{uv}, (u, v) \in \mathcal{E}$$
(8)

Flow conservation constraints:

$$a_{ik}x_{iik} + \sum_{v:(i,v)\in\mathcal{E}}\sum_{j\in\mathcal{J}}f_{iv,ijk} = a_{ik}, i\in\mathcal{I}, k\in\mathcal{K}, i\neq j, a_{ik} > 0$$
(9)

$$\sum_{v:(v,u)\in\mathcal{E}}\sum_{j\in\mathcal{J}}f_{vu,ijk} = \sum_{v:(u,v)\in\mathcal{E}}\sum_{j\in\mathcal{J}}f_{uv,ijk} + x_{iuk}a_{ik}, i\in\mathcal{I}, u\in\mathcal{V}, k\in\mathcal{K}, u\neq i$$
(10)

Fractional Constraints (1)

• Physical goods model: facility capacity constraints $\sum_{i \in I} \sum_{k \in K} a_{ik} x_{ijk} \leq b_j y_j$

Fractional Constraints (1)

- Physical goods model: facility capacity constraints $\sum_{i \in I} \sum_{k \in K} a_{ik} x_{ijk} \leq b_j y_j$
- Digital goods model: capacity sharing between digital objects available on opened facilities leads to fractional term in facility capacity constraints (L ⊆ I)

$$\sum_{i^* \in \mathcal{I}} \sum_{k \in \mathcal{K}} a_{i^*k} \frac{x_{i^*jk}}{x_{i^*jk} + \sum_{\ell \in \mathcal{L} \setminus \{i^*\}} x_{\ell j k}} \le b_j y_j$$
(11)

Fractional Constraints (1)

- Physical goods model: facility capacity constraints $\sum_{i \in I} \sum_{k \in K} a_{ik} x_{ijk} \leq b_j y_j$
- Digital goods model: capacity sharing between digital objects available on opened facilities leads to fractional term in facility capacity constraints (L ⊆ I)

$$\sum_{i^* \in \mathcal{I}} \sum_{k \in \mathcal{K}} a_{i^*k} \frac{x_{i^*jk}}{x_{i^*jk} + \sum_{\ell \in \mathcal{L} \setminus \{i^*\}} x_{\ell jk}} \le b_j y_j$$
(11)

- To linearize these constraints: first define a new variable ξ_{jk} such that

$$\xi_{jk} = \frac{1}{x_{i^*jk} + \sum_{\ell \in \mathcal{L} \setminus \{i^*\}} x_{\ell j k}}$$
(12)

- Condition equivalent to

$$\xi_{jk}\left(x_{i^*jk} + \sum_{\ell \in \mathcal{L} \setminus \{i^*\}} x_{\ell jk}\right) = \sum_{i^* \in \mathcal{L}} \xi_{jk} x_{i^*jk} = 1$$
(13)

- In terms of ξ_{jk} , facility capacity constraints can then be rewritten as $(i^* o i)$

$$\sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} a_{ik} \xi_{jk} x_{ijk} \le b_j y_j$$
(14)

$$\sum_{i\in\mathcal{L}}\xi_{jk}x_{ijk}=1$$
(15)

DRCN 2016 - Paris

Fractional Constraints (2)

<u>Theorem</u>: polynomial mixed term z = x.y (x ≜ binary variable, y ≜ continuous variable), can be represented by linear inequalities:

1)
$$z \le Ux$$

2) $z \le y + L(x - 1)$
3) $z \ge y + U(x - 1)$
4) $z \ge Lx$

where, U and L are upper and lower bounds of variable y, i.e., $L \le y \le U$

Fractional Constraints (2)

<u>Theorem</u>: polynomial mixed term z = x.y (x ≜ binary variable, y ≜ continuous variable), can be represented by linear inequalities:

1)
$$z \leq Ux$$

2) $z \leq y + L(x-1)$

3)
$$z \ge y + U(x-1)$$

4)
$$z \ge Lx$$

where, U and L are upper and lower bounds of variable y, i.e., $L \le y \le U$

• Introduce auxiliary variable $\zeta_{ijk} = \xi_{jk} x_{ijk}$, where $\xi_{jk} \triangleq$ fraction such that $L(=0) \le \xi_{jk} \le U(=1)$, to obtain:

$$\sum_{i\in\mathcal{I}}\sum_{k\in\mathcal{K}}a_{ik}\zeta_{ijk}\leq b_jy_j$$
(16)

$$\sum_{i\in\mathcal{L}}\zeta_{ijk}=1\tag{17}$$

$$\zeta_{ijk} \le x_{ijk} \tag{18}$$

$$\zeta_{ijk} \leq \xi_{jk} \tag{19}$$

$$\zeta_{ijk} \geq \xi_{jk} - (1 - x_{ijk}) \tag{20}$$

$$_{ijk} \ge 0$$
 (21)

Ċ

Fractional Constraints (3)

Linearization

- Increases complexity of the model: addition of (I + 1).J.K auxiliary variables ζ_{ijk} and ξ_{jk} together with (4.I + 1).J.K associated constraints
- Works for small-size problems but gap between IP and LP relaxation may become huge for larger problems
- Set \mathcal{L} a priori unknown

Fractional Constraints (3)

Linearization

- Increases complexity of the model: addition of (I + 1).J.K auxiliary variables ζ_{ijk} and ξ_{jk} together with (4.I + 1).J.K associated constraints
- Works for small-size problems but gap between IP and LP relaxation may become huge for larger problems
- Set \mathcal{L} a priori unknown

Heuristic

Most heuristics, e.g., Greedy randomized adaptive search procedure (GRASP), involve fast generation of feasible solutions

Fractional Constraints (3)

Linearization

- Increases complexity of the model: addition of (I + 1).J.K auxiliary variables ζ_{ijk} and ξ_{jk} together with (4.I + 1).J.K associated constraints
- Works for small-size problems but gap between IP and LP relaxation may become huge for larger problems
- Set \mathcal{L} a priori unknown

Heuristic

Most heuristics, e.g., Greedy randomized adaptive search procedure (GRASP), involve fast generation of feasible solutions

Facility capacity constraints

$$\sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} \mathbf{a}_{ik} \frac{\mathbf{x}_{ijk}}{\sum_{\boldsymbol{\ell} \in \mathcal{L}} \mathbf{x}_{\boldsymbol{\ell}jk}} \leq b_j \mathbf{y}_j, \forall j \in \mathcal{J}$$

- Explicit dependence on product index k in LHS of facility capacity constraints prevents per-product formulation
- Capacity sharing among K product types more complex structure than superposition of K independent facility capacity constraints

D.Papadimitriou et al.

DRCN 2016 - Paris

 Start from single product formulation: facility capacity constraints formulated for single-product model (K = 1):

$$\sum_{i \in \mathcal{I}} \mathsf{a}_i rac{\mathsf{x}_{ij}}{\sum_{\ell \in \mathcal{L}} \mathsf{x}_{\ell j}} \leq \mathsf{b}_j \mathsf{y}_j, j \in \mathcal{J}$$

• Start from single product formulation: facility capacity constraints formulated for single-product model (*K* = 1):

$$\sum_{i \in \mathcal{I}} \mathsf{a}_i rac{\mathsf{x}_{ij}}{\sum_{\ell \in \mathcal{L}} \mathsf{x}_{\ell j}} \leq \mathsf{b}_j \mathsf{y}_j, j \in \mathcal{J}$$

• Move denominator out of LHS:

$$\sum_{i \in \mathcal{I}} \mathsf{a}_i x_{ij} \leq b_j \sum_{i \in \mathcal{L}} y_j x_{ij}, j \in \mathcal{J}$$

• Start from single product formulation: facility capacity constraints formulated for single-product model (*K* = 1):

$$\sum_{i \in \mathcal{I}} \mathsf{a}_i rac{\mathsf{x}_{ij}}{\sum_{\ell \in \mathcal{L}} \mathsf{x}_{\ell j}} \leq \mathsf{b}_j \mathsf{y}_j, j \in \mathcal{J}$$

Move denominator out of LHS:

$$\sum_{i \in \mathcal{I}} a_i x_{ij} \leq b_j \sum_{i \in \mathcal{L}} y_j x_{ij}, j \in \mathcal{J}$$

 Assume inequality verified for each k independently (dedicated capacity per-product type):

$$\sum_{i \in \mathcal{I}} a_{ik} x_{ijk} \leq b_{jk} \sum_{i \in \mathcal{L}} y_j x_{ijk}, j \in \mathcal{J}, k \in \mathcal{K}$$

 Start from single product formulation: facility capacity constraints formulated for single-product model (K = 1):

$$\sum_{i \in \mathcal{I}} \mathsf{a}_i rac{\mathsf{x}_{ij}}{\sum_{\ell \in \mathcal{L}} \mathsf{x}_{\ell j}} \leq \mathsf{b}_j \mathsf{y}_j, j \in \mathcal{J}$$

Move denominator out of LHS:

$$\sum_{i \in \mathcal{I}} a_i x_{ij} \leq b_j \sum_{i \in \mathcal{L}} y_j x_{ij}, j \in \mathcal{J}$$

• Assume inequality verified for each k independently (dedicated capacity per-product type):

$$\sum_{i \in \mathcal{I}} a_{ik} x_{ijk} \leq b_{jk} \sum_{i \in \mathcal{L}} y_j x_{ijk}, j \in \mathcal{J}, k \in \mathcal{K}$$

• Re-introduce summation over *k* (in both members):

$$\sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} \mathsf{a}_{ik} \mathsf{x}_{ijk} \leq \sum_{k \in \mathcal{K}} (\mathsf{b}_{jk} \sum_{i \in \mathcal{L}} \mathsf{y}_j \mathsf{x}_{ijk}), j \in \mathcal{J}$$

D.Papadimitriou et al.

DRCN 2016 - Paris

- Transformation removes fractional term (LHS) but introduces sum over individual product capacity (b_{jk})
 - \Rightarrow No apparent gain from this transformation ?

- Transformation removes fractional term (LHS) but introduces sum over individual product capacity (b_{jk})
 ⇒ No apparent gain from this transformation ?
- Assumption: products homogeneously distributed among installed facilities $\rightarrow b_j = K b_{jk}$ (remove dependence on per-product capacity distribution)
 - ⇒ Inequalities for facility capacity constraints (29) when $\mathcal{L} \rightarrow \mathcal{I}$: identical demands assigned to same facility *j*

$$\sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} a_{ik} x_{ijk} \leq \frac{1}{\mathcal{K}} b_j y_j \sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} x_{ijk}, \forall j \in \mathcal{J}$$
(22)

⇒ Inequalities for facility capacity constraints (29) when $|\mathcal{L}| \rightarrow 1$: each product type-size pair assigned to single demand

$$\sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} a_{ik} x_{ijk} \le \frac{1}{K} b_j y_j \sum_{k \in \mathcal{K}} x_{*jk}, \forall j \in \mathcal{J}$$
(23)

- Scenario: Set of disjoint demands wrt product type k of same size s: pairs (k₁, s), (k₂, s), ..., (k_K, s)
 With K = I pairs, i.e., one per customer i ∈ I = K: total capacity required = K.s
- If b_j = s (and facility installation cost low enough to steer local assignment) Then demands initiated locally should be assigned locally
 ⇒ Routing cost should be zero

- Scenario: Set of disjoint demands wrt product type k of same size s: pairs (k₁, s), (k₂, s), ..., (k_K, s)
 With K = I pairs, i.e., one per customer i ∈ I = K: total capacity required = K.s
- If b_j = s (and facility installation cost low enough to steer local assignment) Then demands initiated locally should be assigned locally
 ⇒ Routing cost should be zero
- Not verified because per-facility capacity b_j divided by K
 ⇒ Capacity required on at least one installed facility multiplied by factor K(= I)

- Scenario: Set of disjoint demands wrt product type k of same size s: pairs (k₁, s), (k₂, s), ..., (k_K, s)
 With K = I pairs, i.e., one per customer i ∈ I = K: total capacity required = K.s
- If b_j = s (and facility installation cost low enough to steer local assignment) Then demands initiated locally should be assigned locally
 ⇒ Routing cost should be zero
- Not verified because per-facility capacity b_j divided by K
 ⇒ Capacity required on at least one installed facility multiplied by factor K(= I)

Additional Constraints

Consider simplified objective:

$$\min \sum_{(u,v)\in\mathcal{E}} \tau_{uv} \sum_{i\in\mathcal{I}} \sum_{j\in\mathcal{J}} \sum_{k\in\mathcal{K}} f_{uv,ijk} + \sum_{j\in\mathcal{J}} \mathbf{f}_j y_j$$
(24)

Additional Constraints

Consider simplified objective:

$$\min \sum_{(u,v)\in\mathcal{E}} \tau_{uv} \sum_{i\in\mathcal{I}} \sum_{j\in\mathcal{J}} \sum_{k\in\mathcal{K}} f_{uv,ijk} + \sum_{j\in\mathcal{J}} \mathbf{f}_j y_j$$
(24)

with additional constraints:

- Aggregated capacity constraints $\sum_{i \in I} \sum_{k \in \mathcal{K}} a_{ik} \leq \frac{1}{K} \sum_{j} b_{j} y_{j} \sum_{i} \sum_{k} x_{ijk}$
- Individual fractions remain within [0,1], i.e., $0 \le x_{ijk} \le 1$
- At least one facility shall be opened ∑_{j∈J} y_j ≥ 1 Particular case: divide total demand size by per-facility capacity b_j such that min.number of facilities ≤ ∑_{j∈J} y_j
- All product types covered by installed facilities $\sum_{j \in J} \sum_{k \in \mathcal{K}} z_{jk} \ge K$

MIP Formulation

 $\min \sum_{(u,v) \in \mathcal{E}} \tau_{uv} \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \sum_{k \in \mathcal{K}} f_{uv,ijk} + \sum_{j \in \mathcal{J}} \varphi_j y_j$ (25)subject to: $\sum_{i=1} x_{ijk} = 1$ $i \in \mathcal{I}, k \in \mathcal{K}, a_{ik} > 0$ (26) $z_{ik} \leq y_i$ $i \in \mathcal{J}, k \in \mathcal{K}$ (27) $x_{iik} \leq z_{ik}$ $i \in \mathcal{I}, j \in \mathcal{J}, k \in \mathcal{K}$ (28) $\sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} a_{ik} x_{ijk} \leq \frac{1}{K} b_j y_j \sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} x_{ijk}$ $j \in \mathcal{J}$ (29) $\sum_{i \in \mathcal{T}} \sum_{k \in \mathcal{K}} a_{ik} \leq \frac{1}{K} \sum_{i \in \mathcal{T}} b_j y_j \sum_{i \in \mathcal{T}} \sum_{k \in \mathcal{K}} x_{ijk}$ (30) $f_{uv,ijk} \leq \min(q_{uv}, a_{ik}x_{iik})$ $(u, v) \in \mathcal{E}, i \in \mathcal{I}, j \in \mathcal{J}, k \in \mathcal{K}$ (31) $\sum_{i \in \mathcal{T}} \sum_{i \in \mathcal{T}} \sum_{k \in \mathcal{K}} f_{uv, ijk} \le q_{uv}$ $(u, v) \in \mathcal{E}$ (32) $a_{ik}x_{iik} + \sum_{v \in \mathcal{V}: (i,v) \in \mathcal{E}} \sum_{i \in \mathcal{I}} f_{iv,ijk} = a_{ik}$ $i \in \mathcal{I}, k \in \mathcal{K}, i \neq j, a_{ik} > 0$ (33) $\sum_{\nu:(v,u)\in\mathcal{E}}\sum_{j\in\mathcal{J}}f_{vu,ijk} = \sum_{\nu:(u,v)\in\mathcal{E}}\sum_{j\in\mathcal{J}}f_{uv,ijk} + a_{ik}x_{iuk} \qquad i\in\mathcal{I}, u\in\mathcal{V}, k\in\mathcal{K}, u\neq i$ (34) $v(v,u) \in \mathcal{E}$ $i \in \mathcal{J}$ $x_{iik} \in [0, 1]$ $i \in \mathcal{I}, j \in \mathcal{J}, k \in \mathcal{K}$ (35) $y_i \in \{0, 1\}$ $i \in \mathcal{J}$ (36) $z_{ik} \in \{0, 1\}$ $j \in \mathcal{J}, k \in \mathcal{K}$ (37) $f_{uv,ijk} \ge 0$ $(u, v) \in \mathcal{E}, i \in \mathcal{I}, j \in \mathcal{J}, k \in \mathcal{K}$ (38)

D.Papadimitriou et al.

DRCN 2016 - Paris

Mar.15-17, 2016 22 / 33

Performance benchmark

Goals

- Computational performance evaluation (computational time and solution quality) using CPLEX 12.6
- Target computational time upper bound of 900s (average roll-out time)

Performance benchmark

Goals

- Computational performance evaluation (computational time and solution quality) using CPLEX 12.6
- Target computational time upper bound of 900s (average roll-out time)

Method

- Generate set of 12 instances with O(1000) demands (at least O(100) demands per node)
- Network topology of 25 nodes and 90 arcs
- Tuning facility capacity and associated costs

Performance benchmark

Goals

- Computational performance evaluation (computational time and solution quality) using CPLEX 12.6
- Target computational time upper bound of 900s (average roll-out time)

Method

- Generate set of 12 instances with O(1000) demands (at least O(100) demands per node)
- Network topology of 25 nodes and 90 arcs
- Tuning facility capacity and associated costs

Execution

- Barrier algorithm at root (rootalg = 4)
- Barrier algorithm at other nodes (nodealg = 4)
- Balance feasibility and optimality (mipemphasis = 1)

Performance benchamrk: results

Scenario	Root time (s)	Total time (s)	Final Gap (%)
sc-0k9-0k9	3037	3294	0.00
sc-1k-1k	2516	2773	0.00
sc-1k2-1k2	2306	2565	0.00
sc-1k5-1k5	2506	2763	0.00
sc-1k8-1k8	2921	3179	0.00
sc-2k-2k	3111	5360	0.00
sc-2k25-2k25	2912	5706	0.00
sc-3k-3k	2616	7189	0.00
sc-3k6-3k6	3270	5967	0.00
sc-4k5-4k5	3309	6029	0.00
sc-6k-6k	2895	9664	0.00
sc-9k-9k	3241	5493	0.00
Avg	2887	4999	0.00
Stdev	333	2164	0.00
Scenario	Root time (s)	Total time (s)	Final Gap (%)
Scenario sc-0k9-2k	Root time (s) 3092	Total time (s) 3353	Final Gap (%) 0.00
Scenario sc-0k9-2k sc-1k-2k	Root time (s) 3092 3206	Total time (s) 3353 3463	Final Gap (%) 0.00 0.00
Scenario sc-0k9-2k sc-1k-2k sc-1k2-2k	Root time (s) 3092 3206 3282	Total time (s) 3353 3463 3541	Final Gap (%) 0.00 0.00 0.00
Scenario sc-0k9-2k sc-1k-2k sc-1k2-2k sc-1k5-2k	Root time (s) 3092 3206 3282 3337	Total time (s) 3353 3463 3541 3595	Final Gap (%) 0.00 0.00 0.00 0.00 0.00
Scenario sc-0k9-2k sc-1k-2k sc-1k2-2k sc-1k5-2k sc-1k5-2k sc-1k8-2k	Root time (s) 3092 3206 3282 3337 2824	Total time (s) 3353 3463 3541 3595 3080	Final Gap (%) 0.00 0.00 0.00 0.00 0.00 0.00
Scenario sc-0k9-2k sc-1k-2k sc-1k2-2k sc-1k5-2k sc-1k5-2k sc-1k8-2k sc-2k-2k	Root time (s) 3092 3206 3282 3337 2824 3120	Total time (s) 3353 3463 3541 3595 3080 5405	Final Gap (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Scenario sc-0k9-2k sc-1k-2k sc-1k2-2k sc-1k5-2k sc-1k8-2k sc-2k-2k sc-2k-2k	Root time (s) 3092 3206 3282 3337 2824 3120 2977	Total time (s) 3353 3463 3541 3595 3080 5405 5468	Final Gap (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
Scenario sc-0k9-2k sc-1k-2k sc-1k2-2k sc-1k5-2k sc-1k8-2k sc-2k-2k sc-2k-2s sc-2k25-2k sc-3k-2k	Root time (s) 3092 3206 3282 3337 2824 3120 2977 2847	Total time (s) 3353 3463 3541 3595 3080 5405 5468 9365	Final Gap (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Scenario sc-0k9-2k sc-1k-2k sc-1k2-2k sc-1k5-2k sc-1k8-2k sc-2k-2k sc-2k-2k sc-2k-2k sc-3k-2k	Root time (s) 3092 3206 3282 3337 2824 3120 2977 2847 2759	Total time (s) 3353 3463 3541 3595 3080 5405 5468 9365 5103	Final Gap (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Scenario sc-0k9-2k sc-1k-2k sc-1k2-2k sc-1k5-2k sc-1k8-2k sc-2k-2k sc-2k25-2k sc-3k-2k sc-3k6-2k sc-4k5-2k	Root time (s) 3092 3206 3282 3337 2824 3120 2977 2847 2759 2880	Total time (s) 3353 3463 3541 3595 3080 5405 5468 9365 5103 5365	Final Gap (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Scenario sc-0k9-2k sc-1k-2k sc-1k2-2k sc-1k5-2k sc-1k8-2k sc-2k-2k sc-2k-2k sc-2k25-2k sc-3k6-2k sc-3k6-2k sc-6k-2k	Root time (s) 3092 3206 3282 3337 2824 3120 2977 2847 2759 2880 3558	Total time (s) 3353 3463 3541 3595 3080 5405 5468 9365 5103 5365 5490	Final Gap (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Scenario sc-0k9-2k sc-1k-2k sc-1k2-2k sc-1k5-2k sc-2k-2k sc-2k-2k sc-2k-2k sc-3k-2k sc-3k-2k sc-3k-2k sc-4k5-2k sc-6k-2k sc-9k-2k	Root time (s) 3092 3206 3282 3337 2824 3120 2977 2847 2759 2880 3558 2628	Total time (s) 3353 3463 3541 3595 3080 5405 5468 9365 5103 5365 5490 4931	Final Gap (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Scenario sc-0k9-2k sc-1k-2k sc-1k2-2k sc-1k5-2k sc-1k8-2k sc-2k25-2k sc-2k25-2k sc-3k-2k sc-3k-2k sc-4k5-2k sc-6k-2k sc-6k-2k sc-9k-2k Avg	Root time (s) 3092 3206 3282 3337 2824 3120 2977 2847 2759 2880 3558 2628 2808	Total time (s) 3353 3463 3541 3595 3080 5405 5468 9365 5103 5365 5490 4931 4474	Final Gap (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D.Papadimitriou et al.

Evaluation instances: topologies and demands

• Topologies (SNDLib database)

Topology	Nodes	Links	Min,Max,Avg Degree	Diameter
abilene	12	15	1;4;2.50	3
atlanta	15	22	2;4;2.93	3
france	25	45	2;10;3.60	8
geant	22	36	2;8;3.27	5
germany50	50	88	2;5;3.52	9
india35	35	80	2;9;4.57	7
newyork	16	49	2;11;6.12	2
norway	27	51	2;6;3.78	7

• Links capacity and cost from SNDlib database

Evaluation instances: topologies and demands

Topology	Nodes	Links	Min,Max,Avg Degree	Diamete
abilene	12	15	1;4;2.50	3
atlanta	15	22	2;4;2.93	3
france	25	45	2;10;3.60	8
geant	22	36	2;8;3.27	5
germany50	50	88	2;5;3.52	9
india35	35	80	2;9;4.57	7
newyork	16	49	2;11;6.12	2
norway	27	51	2;6;3.78	7

• Topologies (SNDLib database)

- Links capacity and cost from SNDlib database
- Demands
 - Produce set of ten problem instances with 3000 demands
 - Demands generated using following distributions:
 - **Demand size**: Pareto distribution commonly used to model file size $f(x) = \frac{\alpha x_m^{\alpha}}{x^{\alpha+1}}, x \ge x_m$
 - **Demand frequence**: Generalized Zipf-Mandelbrot distribution (frequency of event occurrence inversely proportional to its rank)

Results: Number of facilities vs. Facility Capacity

Results: Routing Cost vs. Facility Charge

Deeper look (1): Digital goods model

DRCN 2016 - Paris

Deeper look (2): Physical goods model

- Reliability based on levels assignments strategy: r (r = 0,..., J − 1) level at which a facility serves a given customer demand
 - r=0: primary assignment
 - r=1: first backup
 - and so on

- Reliability based on levels assignments strategy: r (r = 0,..., J − 1) level at which a facility serves a given customer demand
 - r=0: primary assignment
 - r=1: first backup
 - and so on
- If customer i demand level-r assigned facility failed then level-(r + 1) assigned facility serves this demand as backup

- Reliability based on levels assignments strategy: r (r = 0,..., J − 1) level at which a facility serves a given customer demand
 - r=0: primary assignment
 - r=1: first backup
 - and so on
- If customer i demand level-r assigned facility failed then level-(r + 1) assigned facility serves this demand as backup
- Objective function:

$$\sum_{j \in \mathcal{J}} \varphi_j y_j + \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \sum_{k \in \mathcal{K}} \sum_{r=0}^{J-1} d_{ij} a_{ijk} x_{ijkr} q^r (1-q)$$
(39)

- Reliability based on levels assignments strategy: r (r = 0,..., J − 1) level at which a facility serves a given customer demand
 - r=0: primary assignment
 - r=1: first backup
 - and so on
- If customer i demand level-r assigned facility failed then level-(r + 1) assigned facility serves this demand as backup
- Objective function:

$$\sum_{j \in \mathcal{J}} \varphi_j y_j + \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \sum_{k \in \mathcal{K}} \sum_{r=0}^{J-1} d_{ij} a_{ijk} x_{ijkr} q^r (1-q)$$
(39)

- First term: total fixed installation cost
- Second term: expected transport cost where facility j serves customer i demand if
 - its lower-level assigned facilities all disrupted: occurrence probability q^r
 - and facility j still available: occurrence probability 1q

Results: Demand Protection (cRFLP) vs. Rerouting (MSMP-cFLFRP)

Total and allocation cost vs. Facility capacity

Results: Main observations

- As facility capacity increases, total cost (R) of re-routing strategy remains lower than total cost (P) of protection strategy (two levels of protection)
 - Higher allocation cost required by cRFLP compared to MSMP-cFLFRP because of smaller number of installed facilities
 - Higher routing cost required by MSMP-CFLFRP because of load-dependent routing cost instead of graph distance cost

Results: Main observations

- As facility capacity increases, total cost (R) of re-routing strategy remains lower than total cost (P) of protection strategy (two levels of protection)
 - Higher allocation cost required by cRFLP compared to MSMP-cFLFRP because of smaller number of installed facilities
 - Higher routing cost required by MSMP-CFLFRP because of load-dependent routing cost instead of graph distance cost
- Highest gain (36%) obtained when tradeoff between spatial distribution of facility capacity (over 8 locations) and routing cost to access them reaches its optimal value

Results: Main observations

- As facility capacity increases, total cost (R) of re-routing strategy remains lower than total cost (P) of protection strategy (two levels of protection)
 - Higher allocation cost required by cRFLP compared to MSMP-cFLFRP because of smaller number of installed facilities
 - Higher routing cost required by MSMP-CFLFRP because of load-dependent routing cost instead of graph distance cost
- Highest gain (36%) obtained when tradeoff between spatial distribution of facility capacity (over 8 locations) and routing cost to access them reaches its optimal value

• Implication: routing metric would require accounting from facility load distribution and data availability

Conclusion and Future Work

Conclusion

- Propose a mixed-integer formulation for combined multi-source multi-product capacitated facility location-flow routing problem (MSMP-cFLFRP)
- Our formulation accounts for specifics of digital object storage and supply Note: known formulations translate multi-product problem as single-commodity problem solved separately for each product
- Approximation of fractional constraints enables to solve to optimality smallto medium-size instances with an order of thousands of demands
- Exploitation in demand assignment re-routing scheme (comparison to demand protection scheme)

Conclusion and Future Work

Conclusion

- Propose a mixed-integer formulation for combined multi-source multi-product capacitated facility location-flow routing problem (MSMP-cFLFRP)
- Our formulation accounts for specifics of digital object storage and supply Note: known formulations translate multi-product problem as single-commodity problem solved separately for each product
- Approximation of fractional constraints enables to solve to optimality smallto medium-size instances with an order of thousands of demands
- Exploitation in demand assignment re-routing scheme (comparison to demand protection scheme)

Future Work

• Improve computation method to avoid excessive computation time on large-instances with order of 10k demands