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Overall Picture
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Model (1)

capacitated Facility Location Problem (cFLP)

Graph G = (V, E) where vertex set V represents
- Demand originating points I ⊆ V
- Set of potential facility locations (sites) J ⊆ V

∀j ∈ J of finite capacity bj
- Facility opening cost ϕj

- Assignment cost $ij (allocation of demand ai from customer demand point i)

Choose subset of potential locations where to install a facility and assign every
client i with known demand ai to single or to (sub)set of open facilities without
exceeding their capacity bj

Goal
Find set of facilities to open (location) and assign demands to open facilities (allocation)
that minimize the sum of

- Opening/installation cost of selected facilities

- Customer demand supplying cost at each facility

- Cost of connecting each customer demand to subset of selected facilities
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Model (2)

Properties
1 Hard-capacitated: only one facility may be installed at each location j ∈ J with

finite capacity bj

2 Multi-source: each client i may be served by multiple sources (facilities j ∈ J )
3 Multi-product: each opened facility j offers multiple (k) commodities a.k.a

products (e.g., digital/content objects of different types)
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Model (3)

Properties
4 Symmetric connection/routing cost: optimal solution to client-to-server problem
≡ optimal solution to server-to-client problem

5 Shared-capacity model:
- Installed capacity shared among objects hosted by each facility
- Difference compared to physical goods: single copy of each object hosted at
installed facilities even if assigned to multiple customer demands ai
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Facility Location-Routing Problem

Conventional cFLP: cost of allocating demand ai from given customer point i
independent of other demands aj

Location-Routing Problem (LRP): combination of cFLP with routing decisions
removes allocation independence property
→ Strongly interrelated location and routing decisions
⇒ Allocation (transportation, routing) cost not limited to graph distance
When routing topology determined endogenously, more effective to change routing
decisions instead of locating new facilities

Main idea
Combination of multi-source multi-product capacitated facility location problem
(MSMP-cFLP) for digital goods with flow routing problem: MSMP-cFLFRP

Modeled and solved independently → Modeled and solved simultaneously
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Reliable Facility Location vs. MSMP-cFLFRP

Demands protection (Snyder2005): RFLP (and capacitated RFLP)

Demands rerouting (this paper): MSMP-cFLFRP
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Input: Data and Parameters

Data

Finite graph G = (V, E) with edge set E and vertex set V
- Set of demand originating points I ⊆ V
- Set of potential facility locations J ⊆ V

Set K (|K| = K): family of products (commodities) that can be hosted by each facility
j ∈ J (|J | = J)

Demand set A
- aik : size of requested product of type k ∈ K initiated by customer demand point

i ∈ I ⊆ V
- Total demand over all product types k ∈ K: A =

∑
i∈I

∑
k∈K aik

Parameters
bj : capacity of facility opened at location j ∈ J (storage capacity)

quv : nominal capacity of arc (u, v) from node u to v
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Variables and Costs

Variables
Real variable xijk : fraction of demand aik requested by customer demand node i for
product type k satisfied/served by facility j (opened/installed at u ∈ V)
Binary variable yj = 1 if facility j of capacity bj opened/installed at node u ∈ V (0
otherwise)

Binary variable zjk = 1 if product type k provided at (opened) facility j (0
otherwise)

Continuous flow variable fuv,ijk : amount of traffic flowing on arc (u, v) in supply of
customer demand i for product k assigned to opened facility j

Cost
ϕj : cost of opening/installing a facility at site j

κijk : cost of assigning to facility opened at site j the fraction of demand aik issued
by customer demand point i for product k

τuv : cost of routing one unit of traffic along arc (u, v)
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MIP formulation

Objective function

1 Facility location cost:
∑

j∈J ϕjyj

2 Demand allocation cost:
∑

i∈I
∑

j∈J
∑

k∈K κijkxijk

3 Traffic routing cost:
∑

(u,v)∈E τuv
∑

i∈I
∑

j∈J
∑

k∈K fuv,ijk

MIP formulation

min
∑

(u,v)∈E

τuv
∑
i∈I

∑
j∈J

∑
k∈K

fuv ,ijk +
∑
j∈V

ϕjyj +
∑
i∈I

∑
j∈J

∑
k∈K

κijkxijk (1)
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MSMP-cFLP Constraints (1)

Demand satisfaction constraints: demand aik for product type k issued by each
customer i shall be satisfied:∑

j∈J

xijk = 1, i ∈ I, k ∈ K, aik > 0 (2)

Product availability: product type k available on facility j only if j opened
Forbids assigning products to closed facilities:

zjk ≤ yj , j ∈ J , k ∈ K (3)

Demand fraction xijk satisfiable by facility j only if product k available at j
Forbids delivery from facility j of product type k to demand node i if product type
k unavailable at facility j

xijk ≤ zjk , i ∈ I, j ∈ J , k ∈ K (4)
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MSMP-cFLP Constraints (2)

Facility capacity constraints:

For physical goods (canonical cFLP):∑
i∈I

∑
k∈K

aikxijk ≤ bjyj ,∀j ∈ J (5)

For digital goods:

Sum of fractions xijk assigned to opened facility j ∈ J does not exceed its
max. capacity bj
Set of d identical demands (same product type k of size s) assigned to j
consumes s units of facility capacity at j instead of d .s units∑

i∈I

∑
k∈K

aik
xijk∑
`∈L x`jk

≤ bjyj , ∀j ∈ J (6)

where, L(⊆ I) , set of identical demands assigned to the same facility j
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Example
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Constraints linking MSMP-cFLP & Flow Routing Problem

Individual flow constraints on arc (u, v): traffic flow associated to customer i
demand for product type k (aik) directed to facility j along arc (u, v)

fuv,ijk ≤ min(quv , aikxijk), (u, v) ∈ E , i ∈ I, j ∈ J , k ∈ K (7)

Aggregated flow constraints on arc (u, v): load (sum of traffic flows) on individual
arcs (u, v) ∈ E does not exceed their nominal capacity quv∑

i∈I

∑
j∈J

∑
k∈K

fuv,ijk ≤ quv , (u, v) ∈ E (8)

Flow conservation constraints:

aikxiik +
∑

v :(i,v)∈E

∑
j∈J

fiv,ijk = aik , i ∈ I, k ∈ K, i 6= j , aik > 0 (9)

∑
v :(v,u)∈E

∑
j∈J

fvu,ijk =
∑

v :(u,v)∈E

∑
j∈J

fuv,ijk + xiukaik , i ∈ I, u ∈ V, k ∈ K, u 6= i (10)
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Fractional Constraints (1)

Physical goods model: facility capacity constraints
∑

i∈I
∑

k∈K aikxijk ≤ bjyj

Digital goods model: capacity sharing between digital objects available on opened
facilities leads to fractional term in facility capacity constraints (L ⊆ I)∑

i∗∈I

∑
k∈K

ai∗k
xi∗jk

xi∗jk +
∑
`∈L\{i∗} x`jk

≤ bjyj (11)

- To linearize these constraints: first define a new variable ξjk such that

ξjk =
1

xi∗jk +
∑
`∈L\{i∗} x`jk

(12)

- Condition equivalent to

ξjk

xi∗jk +
∑

`∈L\{i∗}
x`jk

 =
∑
i∗∈L

ξjkxi∗jk = 1 (13)

- In terms of ξjk , facility capacity constraints can then be rewritten as (i∗ → i)∑
i∈I

∑
k∈K

aikξjkxijk ≤ bjyj (14)

∑
i∈L

ξjkxijk = 1 (15)
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Fractional Constraints (2)

Theorem: polynomial mixed term z = x .y (x , binary variable, y , continuous
variable), can be represented by linear inequalities:
1) z ≤ Ux
2) z ≤ y + L(x − 1)
3) z ≥ y + U(x − 1)
4) z ≥ Lx

where, U and L are upper and lower bounds of variable y , i.e., L ≤ y ≤ U

Introduce auxiliary variable ζijk = ξjkxijk , where ξjk , fraction such that
L(= 0) ≤ ξjk ≤ U(= 1), to obtain:∑

i∈I

∑
k∈K

aikζijk ≤ bjyj (16)

∑
i∈L

ζijk = 1 (17)

ζijk ≤ xijk (18)

ζijk ≤ ξjk (19)

ζijk ≥ ξjk − (1− xijk) (20)

ζijk ≥ 0 (21)
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Fractional Constraints (3)

Linearization
Increases complexity of the model: addition of (I + 1).J.K auxiliary variables
ζijk and ξjk together with (4.I + 1).J.K associated constraints
Works for small-size problems but gap between IP and LP relaxation may
become huge for larger problems
Set L a priori unknown

Heuristic
Most heuristics, e.g., Greedy randomized adaptive search procedure (GRASP),
involve fast generation of feasible solutions

Facility capacity constraints∑
i∈I

∑
k∈K

aik
xijk∑
`∈L x`jk

≤ bjyj ,∀j ∈ J

Explicit dependence on product index k in LHS of facility capacity constraints
prevents per-product formulation

Capacity sharing among K product types more complex structure than
superposition of K independent facility capacity constraints
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Approximation (1)

Start from single product formulation: facility capacity constraints formulated for
single-product model (K = 1):∑

i∈I

ai
xij∑
`∈L x`j

≤ bjyj , j ∈ J

Move denominator out of LHS:∑
i∈I

aixij ≤ bj
∑
i∈L

yjxij , j ∈ J

Assume inequality verified for each k independently (dedicated capacity
per-product type): ∑

i∈I

aikxijk ≤ bjk
∑
i∈L

yjxijk , j ∈ J , k ∈ K

Re-introduce summation over k (in both members):∑
i∈I

∑
k∈K

aikxijk ≤
∑
k∈K

(bjk
∑
i∈L

yjxijk), j ∈ J
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per-product type): ∑

i∈I

aikxijk ≤ bjk
∑
i∈L

yjxijk , j ∈ J , k ∈ K

Re-introduce summation over k (in both members):∑
i∈I

∑
k∈K

aikxijk ≤
∑
k∈K

(bjk
∑
i∈L

yjxijk), j ∈ J

D.Papadimitriou et al. DRCN 2016 - Paris Mar.15-17, 2016 18 / 33



Approximation (2)

Transformation removes fractional term (LHS) but introduces sum over
individual product capacity (bjk)
⇒ No apparent gain from this transformation ?

Assumption: products homogeneously distributed among installed facilities
→ bj = Kbjk (remove dependence on per-product capacity distribution)

⇒ Inequalities for facility capacity constraints (29) when L → I: identical
demands assigned to same facility j∑

i∈I

∑
k∈K

aikxijk ≤
1
K
bjyj

∑
i∈I

∑
k∈K

xijk ,∀j ∈ J (22)

⇒ Inequalities for facility capacity constraints (29) when |L| → 1: each
product type-size pair assigned to single demand∑

i∈I

∑
k∈K

aikxijk ≤
1
K
bjyj

∑
k∈K

x∗jk ,∀j ∈ J (23)
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Approximation (3)

Scenario: Set of disjoint demands wrt product type k of same size s: pairs
(k1, s), (k2, s), . . . , (kK , s)
With K = I pairs, i.e., one per customer i ∈ I = K: total capacity required = K .s

If bj = s (and facility installation cost low enough to steer local assignment)
Then demands initiated locally should be assigned locally
⇒ Routing cost should be zero

Not verified because per-facility capacity bj divided by K
⇒ Capacity required on at least one installed facility multiplied by factor K(= I )
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Additional Constraints

Consider simplified objective:

min
∑

(u,v)∈E

τuv
∑
i∈I

∑
j∈J

∑
k∈K

fuv ,ijk +
∑
j∈J

fjyj (24)

with additional constraints:

Aggregated capacity constraints
∑

i∈I
∑

k∈K aik ≤ 1
K

∑
j bjyj

∑
i

∑
k xijk

Individual fractions remain within [0, 1], i.e., 0 ≤ xijk ≤ 1

At least one facility shall be opened
∑

j∈J yj ≥ 1
Particular case: divide total demand size by per-facility capacity bj such that
min.number of facilities ≤

∑
j∈J yj

All product types covered by installed facilities
∑

j∈J
∑

k∈K zjk ≥ K
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MIP Formulation

min
∑

(u,v)∈E

τuv
∑
i∈I

∑
j∈J

∑
k∈K

fuv ,ijk +
∑
j∈J

ϕjyj (25)

subject to:∑
j∈J

xijk = 1 i ∈ I, k ∈ K, aik > 0 (26)

zjk ≤ yj j ∈ J , k ∈ K (27)
xijk ≤ zjk i ∈ I, j ∈ J , k ∈ K (28)∑
i∈I

∑
k∈K

aikxijk ≤
1
K
bjyj

∑
i∈I

∑
k∈K

xijk j ∈ J (29)

∑
i∈I

∑
k∈K

aik ≤
1
K

∑
j∈J

bjyj
∑
i∈I

∑
k∈K

xijk (30)

fuv ,ijk ≤ min(quv , aikxijk) (u, v) ∈ E , i ∈ I, j ∈ J , k ∈ K (31)∑
i∈I

∑
j∈J

∑
k∈K

fuv ,ijk ≤ quv (u, v) ∈ E (32)

aikxiik +
∑

v∈V:(i ,v)∈E

∑
j∈J

fiv ,ijk = aik i ∈ I, k ∈ K, i 6= j , aik > 0 (33)

∑
v :(v ,u)∈E

∑
j∈J

fvu,ijk =
∑

v :(u,v)∈E

∑
j∈J

fuv ,ijk + aikxiuk i ∈ I, u ∈ V, k ∈ K, u 6= i (34)

xijk ∈ [0, 1] i ∈ I, j ∈ J , k ∈ K (35)
yj ∈ {0, 1} j ∈ J (36)
zjk ∈ {0, 1} j ∈ J , k ∈ K (37)
fuv ,ijk ≥ 0 (u, v) ∈ E , i ∈ I, j ∈ J , k ∈ K (38)
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Performance benchmark

Goals
Computational performance evaluation (computational time and solution quality)
using CPLEX 12.6

Target computational time upper bound of 900s (average roll-out time)

Method
Generate set of 12 instances with O(1000) demands (at least O(100) demands per
node)

Network topology of 25 nodes and 90 arcs

Tuning facility capacity and associated costs

Execution
Barrier algorithm at root (rootalg = 4)

Barrier algorithm at other nodes (nodealg = 4)

Balance feasibility and optimality (mipemphasis = 1)
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Performance benchamrk: results

Scenario Root time (s) Total time (s) Final Gap (%)
sc-0k9-0k9 3037 3294 0.00
sc-1k-1k 2516 2773 0.00

sc-1k2-1k2 2306 2565 0.00
sc-1k5-1k5 2506 2763 0.00
sc-1k8-1k8 2921 3179 0.00
sc-2k-2k 3111 5360 0.00

sc-2k25-2k25 2912 5706 0.00
sc-3k-3k 2616 7189 0.00

sc-3k6-3k6 3270 5967 0.00
sc-4k5-4k5 3309 6029 0.00
sc-6k-6k 2895 9664 0.00
sc-9k-9k 3241 5493 0.00

Avg 2887 4999 0.00
Stdev 333 2164 0.00

Scenario Root time (s) Total time (s) Final Gap (%)
sc-0k9-2k 3092 3353 0.00
sc-1k-2k 3206 3463 0.00
sc-1k2-2k 3282 3541 0.00
sc-1k5-2k 3337 3595 0.00
sc-1k8-2k 2824 3080 0.00
sc-2k-2k 3120 5405 0.00

sc-2k25-2k 2977 5468 0.00
sc-3k-2k 2847 9365 0.00
sc-3k6-2k 2759 5103 0.00
sc-4k5-2k 2880 5365 0.00
sc-6k-2k 3558 5490 0.00
sc-9k-2k 2628 4931 0.00

Avg 2808 4474 0.00
Stdev 272 1716 0.00
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Evaluation instances: topologies and demands

Topologies (SNDLib database)

Topology Nodes Links Min,Max,Avg
Degree Diameter

abilene 12 15 1;4;2.50 3
atlanta 15 22 2;4;2.93 3
france 25 45 2;10;3.60 8
geant 22 36 2;8;3.27 5

germany50 50 88 2;5;3.52 9
india35 35 80 2;9;4.57 7
newyork 16 49 2;11;6.12 2
norway 27 51 2;6;3.78 7

Links capacity and cost from SNDlib database

Demands
Produce set of ten problem instances with 3000 demands
Demands generated using following distributions:

- Demand size: Pareto distribution commonly used to model file size
f (x) =

αxαm
xα+1 , x ≥ xm

- Demand frequence: Generalized Zipf-Mandelbrot distribution (frequency of
event occurrence inversely proportional to its rank)
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Results: Number of facilities vs. Facility Capacity
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Results: Routing Cost vs. Facility Charge
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Deeper look (1): Digital goods model
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Deeper look (2): Physical goods model
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Demand protection: capacitated Reliable Fixed Charge Location Problem (cRFLP)

Reliability based on levels assignments strategy: r (r = 0, . . . , J − 1) level at
which a facility serves a given customer demand

- r=0: primary assignment
- r=1: first backup
- and so on

If customer i demand level−r assigned facility failed
then level−(r + 1) assigned facility serves this demand as backup

Objective function:

∑
j∈J

ϕjyj +
∑
i∈I

∑
j∈J

∑
k∈K

J−1∑
r=0

dijaijkxijkrq
r (1− q) (39)

First term: total fixed installation cost
Second term: expected transport cost where facility j serves customer i demand if

- its lower-level assigned facilities all disrupted: occurrence probability qr

- and facility j still available: occurrence probability 1q
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Results: Demand Protection (cRFLP) vs. Rerouting (MSMP-cFLFRP)
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Results: Main observations

As facility capacity increases, total cost (R) of re-routing strategy remains
lower than total cost (P) of protection strategy (two levels of protection)

- Higher allocation cost required by cRFLP compared to MSMP-cFLFRP
because of smaller number of installed facilities

- Higher routing cost required by MSMP-CFLFRP because of load-dependent
routing cost instead of graph distance cost

Highest gain (36%) obtained when tradeoff between spatial distribution of
facility capacity (over 8 locations) and routing cost to access them reaches
its optimal value

Implication: routing metric would require accounting from facility load
distribution and data availability
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Conclusion and Future Work

Conclusion
Propose a mixed-integer formulation for combined multi-source
multi-product capacitated facility location-flow routing problem
(MSMP-cFLFRP)
Our formulation accounts for specifics of digital object storage and supply
Note: known formulations translate multi-product problem as
single-commodity problem solved separately for each product
Approximation of fractional constraints enables to solve to optimality small-
to medium-size instances with an order of thousands of demands
Exploitation in demand assignment re-routing scheme (comparison to
demand protection scheme)

Future Work

Improve computation method to avoid excessive computation time on
large-instances with order of 10k demands
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