Mixed-Integer Optimization for the Combined capacitated Facility Location-Routing Problem

Dimitri Papadimitriou ${ }^{1}$, Didier Colle ${ }^{2}$, Piet Demeester ${ }^{2}$ dimitri.papadimitriou@nokia.com, didier.colle@ugent.be, pdemeester@ugent.be

${ }^{1}$ Bell Labs - Nokia (Antwerp, Belgium)
${ }^{2}$ INTEC - Ghent University (Gent, Belgium)

> DRCN 2016 - Paris
> March 15-17, 2016

Overall Picture

Model (1)

capacitated Facility Location Problem (cFLP)

- Graph $G=(\mathcal{V}, \mathcal{E})$ where vertex set \mathcal{V} represents
- Demand originating points $\mathcal{I} \subseteq \mathcal{V}$
- Set of potential facility locations (sites) $\mathcal{J} \subseteq \mathcal{V}$
- $\forall j \in \mathcal{J}$ of finite capacity b_{j}
- Facility opening cost φ_{j}
- Assignment cost $\varpi_{i j}$ (allocation of demand a_{i} from customer demand point i)
- Choose subset of potential locations where to install a facility and assign every client i with known demand a_{i} to single or to (sub)set of open facilities without exceeding their capacity b_{j}

Model (1)

capacitated Facility Location Problem (cFLP)

- Graph $G=(\mathcal{V}, \mathcal{E})$ where vertex set \mathcal{V} represents
- Demand originating points $\mathcal{I} \subseteq \mathcal{V}$
- Set of potential facility locations (sites) $\mathcal{J} \subseteq \mathcal{V}$
- $\forall j \in \mathcal{J}$ of finite capacity b_{j}
- Facility opening cost φ_{j}
- Assignment cost $\varpi_{i j}$ (allocation of demand a_{i} from customer demand point i)
- Choose subset of potential locations where to install a facility and assign every client i with known demand a_{i} to single or to (sub)set of open facilities without exceeding their capacity b_{j}

Goal

Find set of facilities to open (location) and assign demands to open facilities (allocation) that minimize the sum of

- Opening/installation cost of selected facilities
- Customer demand supplying cost at each facility
- Cost of connecting each customer demand to subset of selected facilities

Model (2)

Properties

(1) Hard-capacitated: only one facility may be installed at each location $j \in \mathcal{J}$ with finite capacity b_{j}
(2) Multi-source: each client i may be served by multiple sources (facilities $j \in \mathcal{J}$)
(3) Multi-product: each opened facility j offers multiple (k) commodities a.k.a products (e.g., digital/content objects of different types)

Model (2)

Properties

(1) Hard-capacitated: only one facility may be installed at each location $j \in \mathcal{J}$ with finite capacity b_{j}
(2) Multi-source: each client i may be served by multiple sources (facilities $j \in \mathcal{J}$)
(3) Multi-product: each opened facility j offers multiple (k) commodities a.k.a products (e.g., digital/content objects of different types)

Model (3)

Properties

(4) Symmetric connection/routing cost: optimal solution to client-to-server problem \equiv optimal solution to server-to-client problem
(5) Shared-capacity model:

- Installed capacity shared among objects hosted by each facility
- Difference compared to physical goods: single copy of each object hosted at installed facilities even if assigned to multiple customer demands a_{i}

Model (3)

Properties

(4) Symmetric connection/routing cost: optimal solution to client-to-server problem \equiv optimal solution to server-to-client problem
(5) Shared-capacity model:

- Installed capacity shared among objects hosted by each facility
- Difference compared to physical goods: single copy of each object hosted at installed facilities even if assigned to multiple customer demands a_{i}

Facility Location-Routing Problem

- Conventional cFLP: cost of allocating demand a_{i} from given customer point i independent of other demands a_{j}

Facility Location-Routing Problem

- Conventional cFLP: cost of allocating demand a_{i} from given customer point i independent of other demands a_{j}
- Location-Routing Problem (LRP): combination of cFLP with routing decisions removes allocation independence property
\rightarrow Strongly interrelated location and routing decisions

Facility Location-Routing Problem

- Conventional cFLP: cost of allocating demand a_{i} from given customer point i independent of other demands a_{j}
- Location-Routing Problem (LRP): combination of cFLP with routing decisions removes allocation independence property
\rightarrow Strongly interrelated location and routing decisions
\Rightarrow Allocation (transportation, routing) cost not limited to graph distance
- When routing topology determined endogenously, more effective to change routing decisions instead of locating new facilities

Facility Location-Routing Problem

- Conventional cFLP: cost of allocating demand a_{i} from given customer point i independent of other demands a_{j}
- Location-Routing Problem (LRP): combination of cFLP with routing decisions removes allocation independence property
\rightarrow Strongly interrelated location and routing decisions
\Rightarrow Allocation (transportation, routing) cost not limited to graph distance
- When routing topology determined endogenously, more effective to change routing decisions instead of locating new facilities

Facility Location-Routing Problem

- Conventional cFLP: cost of allocating demand a_{i} from given customer point i independent of other demands a_{j}
- Location-Routing Problem (LRP): combination of cFLP with routing decisions removes allocation independence property
\rightarrow Strongly interrelated location and routing decisions
\Rightarrow Allocation (transportation, routing) cost not limited to graph distance
- When routing topology determined endogenously, more effective to change routing decisions instead of locating new facilities

Main idea

- Combination of multi-source multi-product capacitated facility location problem (MSMP-cFLP) for digital goods with flow routing problem: MSMP-cFLFRP
- Modeled and solved independently \rightarrow Modeled and solved simultaneously

Reliable Facility Location vs. MSMP-cFLFRP

- Demands protection (Snyder2005): RFLP (and capacitated RFLP)

Reliable Facility Location vs. MSMP-cFLFRP

- Demands protection (Snyder2005): RFLP (and capacitated RFLP)

- Demands rerouting (this paper): MSMP-cFLFRP

Input: Data and Parameters

Data

- Finite graph $G=(\mathcal{V}, \mathcal{E})$ with edge set \mathcal{E} and vertex set \mathcal{V}
- Set of demand originating points $\mathcal{I} \subseteq \mathcal{V}$
- Set of potential facility locations $\mathcal{J} \subseteq \mathcal{V}$
- Set $\mathcal{K}(|\mathcal{K}|=K)$: family of products (commodities) that can be hosted by each facility $j \in \mathcal{J}(|\mathcal{J}|=J)$
- Demand set \mathcal{A}
- $a_{i k}$: size of requested product of type $k \in \mathcal{K}$ initiated by customer demand point $i \in \mathcal{I} \subseteq \mathcal{V}$
- Total demand over all product types $k \in \mathcal{K}: A=\sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} a_{i k}$

Input: Data and Parameters

Data

- Finite graph $G=(\mathcal{V}, \mathcal{E})$ with edge set \mathcal{E} and vertex set \mathcal{V}
- Set of demand originating points $\mathcal{I} \subseteq \mathcal{V}$
- Set of potential facility locations $\mathcal{J} \subseteq \mathcal{V}$
- Set $\mathcal{K}(|\mathcal{K}|=K)$: family of products (commodities) that can be hosted by each facility $j \in \mathcal{J}(|\mathcal{J}|=J)$
- Demand set \mathcal{A}
- $a_{i k}$: size of requested product of type $k \in \mathcal{K}$ initiated by customer demand point $i \in \mathcal{I} \subseteq \mathcal{V}$
- Total demand over all product types $k \in \mathcal{K}: A=\sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} a_{i k}$

Parameters

- b_{j} : capacity of facility opened at location $j \in \mathcal{J}$ (storage capacity)
- $q_{u v}$: nominal capacity of $\operatorname{arc}(u, v)$ from node u to v

Variables and Costs

Variables

- Real variable $x_{i j k}$: fraction of demand $a_{i k}$ requested by customer demand node i for product type k satisfied/served by facility j (opened/installed at $u \in \mathcal{V}$)
- Binary variable $y_{j}=1$ if facility j of capacity b_{j} opened/installed at node $u \in \mathcal{V}$ (0 otherwise)
- Binary variable $z_{j k}=1$ if product type k provided at (opened) facility j (0 otherwise)
- Continuous flow variable $f_{u v, i j k}$: amount of traffic flowing on arc (u, v) in supply of customer demand i for product k assigned to opened facility j

Variables and Costs

Variables

- Real variable $x_{i j k}$: fraction of demand $a_{i k}$ requested by customer demand node i for product type k satisfied/served by facility j (opened/installed at $u \in \mathcal{V}$)
- Binary variable $y_{j}=1$ if facility j of capacity b_{j} opened/installed at node $u \in \mathcal{V}$ (0 otherwise)
- Binary variable $z_{j k}=1$ if product type k provided at (opened) facility j (0 otherwise)
- Continuous flow variable $f_{u v, i j k}$: amount of traffic flowing on arc (u, v) in supply of customer demand i for product k assigned to opened facility j

Cost

- φ_{j} : cost of opening/installing a facility at site j
- $\kappa_{i j k}$: cost of assigning to facility opened at site j the fraction of demand $a_{i k}$ issued by customer demand point i for product k
- $\tau_{u v}$: cost of routing one unit of traffic along arc (u, v)

MIP formulation

Objective function

(1) Facility location cost: $\sum_{j \in \mathcal{J}} \varphi_{j} y_{j}$
(2) Demand allocation cost: $\sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \sum_{k \in \mathcal{K}} \kappa_{i j k} x_{i j k}$
(3) Traffic routing cost: $\sum_{(u, v) \in \mathcal{E}} \tau_{u v} \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \sum_{k \in \mathcal{K}} f_{u v, i j k}$

MIP formulation

Objective function

(1) Facility location cost: $\sum_{j \in \mathcal{J}} \varphi_{j} y_{j}$
(2) Demand allocation cost: $\sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \sum_{k \in \mathcal{K}} \kappa_{i j k} x_{i j k}$
(3) Traffic routing cost: $\sum_{(u, v) \in \mathcal{E}} \tau_{u v} \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \sum_{k \in \mathcal{K}} f_{u v, i j k}$

MIP formulation

$$
\begin{equation*}
\min \sum_{(u, v) \in \mathcal{E}} \tau_{u v} \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \sum_{k \in \mathcal{K}} f_{u v, i j k}+\sum_{j \in \mathcal{V}} \varphi_{j} y_{j}+\sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \sum_{k \in \mathcal{K}} \kappa_{i j k} x_{i j k} \tag{1}
\end{equation*}
$$

MSMP-cFLP Constraints (1)

- Demand satisfaction constraints: demand $a_{i k}$ for product type k issued by each customer i shall be satisfied:

$$
\begin{equation*}
\sum_{j \in \mathcal{J}} x_{i j k}=1, i \in \mathcal{I}, k \in \mathcal{K}, a_{i k}>0 \tag{2}
\end{equation*}
$$

- Product availability: product type k available on facility j only if j opened Forbids assigning products to closed facilities:

$$
\begin{equation*}
z_{j k} \leq y_{j}, j \in \mathcal{J}, k \in \mathcal{K} \tag{3}
\end{equation*}
$$

- Demand fraction $x_{i j k}$ satisfiable by facility j only if product k available at j Forbids delivery from facility j of product type k to demand node i if product type k unavailable at facility j

$$
\begin{equation*}
x_{i j k} \leq z_{j k}, i \in \mathcal{I}, j \in \mathcal{J}, k \in \mathcal{K} \tag{4}
\end{equation*}
$$

MSMP-cFLP Constraints (2)

Facility capacity constraints:

- For physical goods (canonical cFLP):

$$
\begin{equation*}
\sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} a_{i k} x_{i j k} \leq b_{j} y_{j}, \forall j \in \mathcal{J} \tag{5}
\end{equation*}
$$

MSMP-cFLP Constraints (2)

Facility capacity constraints:

- For physical goods (canonical cFLP):

$$
\begin{equation*}
\sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} a_{i k} x_{i j k} \leq b_{j} y_{j}, \forall j \in \mathcal{J} \tag{5}
\end{equation*}
$$

- For digital goods:
- Sum of fractions $x_{i j k}$ assigned to opened facility $j \in \mathcal{J}$ does not exceed its max. capacity b_{j}
- Set of d identical demands (same product type k of size s) assigned to j consumes s units of facility capacity at j instead of $d . s$ units

$$
\begin{equation*}
\sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} a_{i k} \frac{x_{i j k}}{\sum_{\ell \in \mathcal{L}} x_{\ell j k}} \leq b_{j} y_{j}, \forall j \in \mathcal{J} \tag{6}
\end{equation*}
$$

where, $\mathcal{L}(\subseteq \mathcal{I}) \triangleq$ set of identical demands assigned to the same facility j

Example

Example

Constraints linking MSMP-cFLP \& Flow Routing Problem

- Individual flow constraints on arc (u, v) : traffic flow associated to customer i demand for product type $k\left(a_{i k}\right)$ directed to facility j along arc (u, v)

$$
\begin{equation*}
f_{u v, i j k} \leq \min \left(q_{u v}, a_{i k} x_{i j k}\right),(u, v) \in \mathcal{E}, i \in \mathcal{I}, j \in \mathcal{J}, k \in \mathcal{K} \tag{7}
\end{equation*}
$$

- Aggregated flow constraints on arc (u, v): load (sum of traffic flows) on individual $\operatorname{arcs}(u, v) \in \mathcal{E}$ does not exceed their nominal capacity $q_{u v}$

$$
\begin{equation*}
\sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \sum_{k \in \mathcal{K}} f_{u v, i j k} \leq q_{u v},(u, v) \in \mathcal{E} \tag{8}
\end{equation*}
$$

- Flow conservation constraints:

$$
\begin{gather*}
a_{i k} x_{i i k}+\sum_{v:(i, v) \in \mathcal{E}} \sum_{j \in \mathcal{J}} f_{i v, i j k}=a_{i k}, i \in \mathcal{I}, k \in \mathcal{K}, i \neq j, a_{i k}>0 \tag{9}\\
\sum_{v:(v, u) \in \mathcal{E}} \sum_{j \in \mathcal{J}} f_{v u, i j k}=\sum_{v:(u, v) \in \mathcal{E}} \sum_{j \in \mathcal{J}} f_{u v, i j k}+x_{i u k} a_{i k}, i \in \mathcal{I}, u \in \mathcal{V}, k \in \mathcal{K}, u \neq i \tag{10}
\end{gather*}
$$

Fractional Constraints (1)

- Physical goods model: facility capacity constraints $\sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} a_{i k} x_{j k} \leq b_{j} y_{j}$

Fractional Constraints (1)

- Physical goods model: facility capacity constraints $\sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} a_{i k} x_{i j k} \leq b_{j} y_{j}$
- Digital goods model: capacity sharing between digital objects available on opened facilities leads to fractional term in facility capacity constraints ($\mathcal{L} \subseteq \mathcal{I}$)

$$
\begin{equation*}
\sum_{i^{*} \in \mathcal{I}} \sum_{k \in \mathcal{K}} a_{i^{*} k} \frac{x_{i^{*} j k}}{x_{i^{*} j k}+\sum_{\ell \in \mathcal{L} \backslash\left\{i^{*}\right\}} x_{\ell j k}} \leq b_{j} y_{j} \tag{11}
\end{equation*}
$$

Fractional Constraints (1)

- Physical goods model: facility capacity constraints $\sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} a_{i k} x_{i j k} \leq b_{j} y_{j}$
- Digital goods model: capacity sharing between digital objects available on opened facilities leads to fractional term in facility capacity constraints ($\mathcal{L} \subseteq \mathcal{I}$)

$$
\begin{equation*}
\sum_{i^{*} \in \mathcal{I}} \sum_{k \in \mathcal{K}} a_{i^{*} k} \frac{x_{i^{*} j k}}{x_{i^{*} j k}+\sum_{\ell \in \mathcal{L} \backslash\left\{i^{*}\right\}} x_{\ell j k}} \leq b_{j} y_{j} \tag{11}
\end{equation*}
$$

- To linearize these constraints: first define a new variable $\xi_{j k}$ such that

$$
\begin{equation*}
\xi_{j k}=\frac{1}{x_{i^{*} j k}+\sum_{\ell \in \mathcal{L} \backslash\left\{i^{*}\right\}} x_{\ell j k}} \tag{12}
\end{equation*}
$$

- Condition equivalent to

$$
\begin{equation*}
\xi_{j k}\left(x_{i * j k}+\sum_{\ell \in \mathcal{L} \backslash\left\{i^{*}\right\}} x_{\ell j k}\right)=\sum_{i * \in \mathcal{L}} \xi_{j k} x_{i^{*} j k}=1 \tag{13}
\end{equation*}
$$

- In terms of $\xi_{j k}$, facility capacity constraints can then be rewritten as $\left(i^{*} \rightarrow i\right)$

$$
\begin{array}{r}
\sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} a_{i k} \xi_{j k} x_{i j k} \leq b_{j} y_{j} \\
\sum_{i \in \mathcal{L}} \xi_{j k} x_{i j k}=1 \tag{15}
\end{array}
$$

Fractional Constraints (2)

- Theorem: polynomial mixed term $z=x \cdot y(x \triangleq$ binary variable, $y \triangleq$ continuous variable), can be represented by linear inequalities:

1) $z \leq U x$
2) $z \leq y+L(x-1)$
3) $z \geq y+U(x-1)$
4) $z \geq L x$
where, U and L are upper and lower bounds of variable y, i.e., $L \leq y \leq U$

Fractional Constraints (2)

- Theorem: polynomial mixed term $z=x . y(x \triangleq$ binary variable, $y \triangleq$ continuous variable), can be represented by linear inequalities:

1) $z \leq U x$
2) $z \leq y+L(x-1)$
3) $z \geq y+U(x-1)$
4) $z \geq L x$
where, U and L are upper and lower bounds of variable y, i.e., $L \leq y \leq U$

- Introduce auxiliary variable $\zeta_{i j k}=\xi_{j k} x_{i j k}$, where $\xi_{j k} \triangleq$ fraction such that $L(=0) \leq \xi_{j k} \leq U(=1)$, to obtain:

$$
\begin{array}{r}
\sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} a_{i k} \zeta_{i j k} \leq b_{j} y_{j} \\
\sum_{i \in \mathcal{L}} \zeta_{i j k}=1 \\
\zeta_{i j k} \leq x_{i j k} \\
\zeta_{i j k} \leq \xi_{j k} \\
\zeta_{i j k} \geq \xi_{j k}-\left(1-x_{i j k}\right) \\
\zeta_{i j k} \geq 0 \tag{21}
\end{array}
$$

Fractional Constraints (3)

- Linearization
- Increases complexity of the model: addition of $(I+1)$.J.K auxiliary variables $\zeta_{i j k}$ and $\xi_{j k}$ together with $(4 . I+1)$.J.K associated constraints
- Works for small-size problems but gap between IP and LP relaxation may become huge for larger problems
- Set \mathcal{L} a priori unknown

Fractional Constraints (3)

- Linearization
- Increases complexity of the model: addition of $(I+1)$.J.K auxiliary variables $\zeta_{i j k}$ and $\xi_{j k}$ together with $(4 . I+1)$.J.K associated constraints
- Works for small-size problems but gap between IP and LP relaxation may become huge for larger problems
- Set \mathcal{L} a priori unknown
- Heuristic

Most heuristics, e.g., Greedy randomized adaptive search procedure (GRASP), involve fast generation of feasible solutions

Fractional Constraints (3)

- Linearization
- Increases complexity of the model: addition of $(I+1)$.J.K auxiliary variables $\zeta_{i j k}$ and $\xi_{j k}$ together with $(4 . I+1)$.J.K associated constraints
- Works for small-size problems but gap between IP and LP relaxation may become huge for larger problems
- Set \mathcal{L} a priori unknown
- Heuristic

Most heuristics, e.g., Greedy randomized adaptive search procedure (GRASP), involve fast generation of feasible solutions

Facility capacity constraints

$$
\sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} a_{i k} \frac{x_{i j k}}{\sum_{\ell \in \mathcal{L}} x_{\ell j k}} \leq b_{j} y_{j}, \forall j \in \mathcal{J}
$$

- Explicit dependence on product index k in LHS of facility capacity constraints prevents per-product formulation
- Capacity sharing among K product types more complex structure than superposition of K independent facility capacity constraints

Approximation (1)

- Start from single product formulation: facility capacity constraints formulated for single-product model $(K=1)$:

$$
\sum_{i \in \mathcal{I}} a_{i} \frac{x_{i j}}{\sum_{\ell \in \mathcal{L}} x_{\ell j}} \leq b_{j} y_{j}, j \in \mathcal{J}
$$

Approximation (1)

- Start from single product formulation: facility capacity constraints formulated for single-product model $(K=1)$:

$$
\sum_{i \in \mathcal{I}} a_{i} \frac{x_{i j}}{\sum_{\ell \in \mathcal{L}} x_{\ell j}} \leq b_{j} y_{j}, j \in \mathcal{J}
$$

- Move denominator out of LHS:

$$
\sum_{i \in \mathcal{I}} a_{i} x_{i j} \leq b_{j} \sum_{i \in \mathcal{L}} y_{j} x_{i j}, j \in \mathcal{J}
$$

Approximation (1)

- Start from single product formulation: facility capacity constraints formulated for single-product model $(K=1)$:

$$
\sum_{i \in \mathcal{I}} a_{i} \frac{x_{i j}}{\sum_{\ell \in \mathcal{L}} x_{\ell j}} \leq b_{j} y_{j}, j \in \mathcal{J}
$$

- Move denominator out of LHS:

$$
\sum_{i \in \mathcal{I}} a_{i} x_{i j} \leq b_{j} \sum_{i \in \mathcal{L}} y_{j} x_{i j}, j \in \mathcal{J}
$$

- Assume inequality verified for each k independently (dedicated capacity per-product type):

$$
\sum_{i \in \mathcal{I}} a_{i k} x_{i j k} \leq b_{j k} \sum_{i \in \mathcal{L}} y_{j} x_{i j k}, j \in \mathcal{J}, k \in \mathcal{K}
$$

Approximation (1)

- Start from single product formulation: facility capacity constraints formulated for single-product model $(K=1)$:

$$
\sum_{i \in \mathcal{I}} a_{i} \frac{x_{i j}}{\sum_{\ell \in \mathcal{L}} x_{\ell j}} \leq b_{j} y_{j}, j \in \mathcal{J}
$$

- Move denominator out of LHS:

$$
\sum_{i \in \mathcal{I}} a_{i} x_{i j} \leq b_{j} \sum_{i \in \mathcal{L}} y_{j} x_{i j}, j \in \mathcal{J}
$$

- Assume inequality verified for each k independently (dedicated capacity per-product type):

$$
\sum_{i \in \mathcal{I}} a_{i k} x_{i j k} \leq b_{j k} \sum_{i \in \mathcal{L}} y_{j} x_{i j k}, j \in \mathcal{J}, k \in \mathcal{K}
$$

- Re-introduce summation over k (in both members):

$$
\sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} a_{i k} x_{i j k} \leq \sum_{k \in \mathcal{K}}\left(b_{j k} \sum_{i \in \mathcal{L}} y_{j} x_{i j k}\right), j \in \mathcal{J}
$$

Approximation (2)

- Transformation removes fractional term (LHS) but introduces sum over individual product capacity ($b_{j k}$)
\Rightarrow No apparent gain from this transformation ?

Approximation (2)

- Transformation removes fractional term (LHS) but introduces sum over individual product capacity ($b_{j k}$)
\Rightarrow No apparent gain from this transformation ?
- Assumption: products homogeneously distributed among installed facilities $\rightarrow b_{j}=K b_{j k}$ (remove dependence on per-product capacity distribution)
\Rightarrow Inequalities for facility capacity constraints (29) when $\mathcal{L} \rightarrow \mathcal{I}$: identical demands assigned to same facility j

$$
\begin{equation*}
\sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} a_{i k} x_{i j k} \leq \frac{1}{K} b_{j} y_{j} \sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} x_{i j k}, \forall j \in \mathcal{J} \tag{22}
\end{equation*}
$$

\Rightarrow Inequalities for facility capacity constraints (29) when $|\mathcal{L}| \rightarrow 1$: each product type-size pair assigned to single demand

$$
\begin{equation*}
\sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} a_{i k} x_{i j k} \leq \frac{1}{K} b_{j} y_{j} \sum_{k \in \mathcal{K}} x_{* j k}, \forall j \in \mathcal{J} \tag{23}
\end{equation*}
$$

Approximation (3)

- Scenario: Set of disjoint demands wrt product type k of same size s : pairs $\left(k_{1}, s\right),\left(k_{2}, s\right), \ldots,\left(k_{K}, s\right)$
With $K=I$ pairs, i.e., one per customer $i \in \mathcal{I}=\mathcal{K}$: total capacity required $=K . s$
- If $b_{j}=s$ (and facility installation cost low enough to steer local assignment) Then demands initiated locally should be assigned locally \Rightarrow Routing cost should be zero

Approximation (3)

- Scenario: Set of disjoint demands wrt product type k of same size s : pairs $\left(k_{1}, s\right),\left(k_{2}, s\right), \ldots,\left(k_{K}, s\right)$
With $K=I$ pairs, i.e., one per customer $i \in \mathcal{I}=\mathcal{K}$: total capacity required $=K . s$
- If $b_{j}=s$ (and facility installation cost low enough to steer local assignment)

Then demands initiated locally should be assigned locally \Rightarrow Routing cost should be zero

- Not verified because per-facility capacity b_{j} divided by K \Rightarrow Capacity required on at least one installed facility multiplied by factor $K(=I)$

Approximation (3)

- Scenario: Set of disjoint demands wrt product type k of same size s : pairs $\left(k_{1}, s\right),\left(k_{2}, s\right), \ldots,\left(k_{K}, s\right)$
With $K=I$ pairs, i.e., one per customer $i \in \mathcal{I}=\mathcal{K}$: total capacity required $=K . s$
- If $b_{j}=s$ (and facility installation cost low enough to steer local assignment)

Then demands initiated locally should be assigned locally \Rightarrow Routing cost should be zero

- Not verified because per-facility capacity b_{j} divided by K \Rightarrow Capacity required on at least one installed facility multiplied by factor $K(=I)$

Case
$\mathrm{x}_{311}=\mathrm{a} \rightarrow \mathbf{1}$
$\mathrm{x}_{301}=1-\mathrm{a} \rightarrow \mathbf{0}$ (routing cost $\rightarrow 0$)
$\mathrm{x}_{422}=\mathrm{b} \rightarrow 1$
$\mathrm{x}_{402}=1-\mathrm{b} \rightarrow \mathbf{0}$ (idem)
$\Rightarrow 1$ unit on $\mathrm{j}=1$ and $\mathrm{j}=\mathbf{2}+\mathbf{1}$ unit on $\mathrm{j}=\mathbf{3}$
(almost unused)

With K products of same size s: over-
dimensioning by factor K

Additional Constraints

Consider simplified objective:

$$
\begin{equation*}
\min \sum_{(u, v) \in \mathcal{E}} \tau_{u v} \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \sum_{k \in \mathcal{K}} f_{u v, i j k}+\sum_{j \in \mathcal{J}} \mathrm{f}_{j} y_{j} \tag{24}
\end{equation*}
$$

Additional Constraints

Consider simplified objective:

$$
\begin{equation*}
\min \sum_{(u, v) \in \mathcal{E}} \tau_{u v} \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \sum_{k \in \mathcal{K}} f_{u v, i j k}+\sum_{j \in \mathcal{J}} \mathrm{f}_{j} y_{j} \tag{24}
\end{equation*}
$$

with additional constraints:

- Aggregated capacity constraints $\sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} a_{i k} \leq \frac{1}{K} \sum_{j} b_{j} y_{j} \sum_{i} \sum_{k} x_{i j k}$
- Individual fractions remain within $[0,1]$, i.e., $0 \leq x_{i j k} \leq 1$
- At least one facility shall be opened $\sum_{j \in J} y_{j} \geq 1$

Particular case: divide total demand size by per-facility capacity b_{j} such that min.number of facilities $\leq \sum_{j \in J} y_{j}$

- All product types covered by installed facilities $\sum_{j \in J} \sum_{k \in \mathcal{K}} z_{j k} \geq K$

MIP Formulation

$$
\begin{align*}
& \min \sum_{(u, v) \in \mathcal{E}} \tau_{u v} \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \sum_{k \in \mathcal{K}} f_{u v, i j k}+\sum_{j \in \mathcal{J}} \varphi_{j} y_{j} \tag{25}\\
& \text { subject to: } \\
& \sum_{j \in \mathcal{J}} x_{i j k}=1 \tag{26}\\
& z_{j k} \leq y_{j} \tag{27}\\
& x_{i j k} \leq z_{j k} \tag{28}\\
& \sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} a_{i k} x_{i j k} \leq \frac{1}{K} b_{j} y_{j} \sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} x_{i j k} \tag{29}\\
& \sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} a_{i k} \leq \frac{1}{K} \sum_{j \in \mathcal{J}} b_{j} y_{j} \sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}} x_{i j k} \tag{30}\\
& f_{u v, j i k} \leq \min \left(q_{u v}, a_{i k} x_{i j k}\right) \quad(u, v) \in \mathcal{E}, i \in \mathcal{I}, j \in \mathcal{J}, k \in \mathcal{K} \tag{31}\\
& \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \sum_{k \in \mathcal{K}} f_{u v, i j k} \leq q_{u v} \tag{32}\\
& (u, v) \in \mathcal{E} \\
& a_{i k} x_{i j k}+\sum_{v \in \mathcal{V}:(i, v) \in \mathcal{E}} \sum_{j \in \mathcal{J}} f_{i v, i j k}=a_{i k} \quad i \in \mathcal{I}, k \in \mathcal{K}, i \neq j, a_{i k}>0 \tag{33}\\
& \sum_{v:(v, u) \in \mathcal{E}} \sum_{j \in \mathcal{J}} f_{v u, i j k}=\sum_{v:(u, v) \in \mathcal{E}} \sum_{j \in \mathcal{J}} f_{u v, i j k}+a_{i k} x_{i u k} \quad i \in \mathcal{I}, u \in \mathcal{V}, k \in \mathcal{K}, u \neq i \tag{34}\\
& x_{i j k} \in[0,1] \quad i \in \mathcal{I}, j \in \mathcal{J}, k \in \mathcal{K} \tag{35}\\
& y_{j} \in\{0,1\} \quad j \in \mathcal{J} \tag{36}\\
& z_{j k} \in\{0,1\} \tag{37}\\
& j \in \mathcal{J}, k \in \mathcal{K} \\
& f_{u v, i j k} \geq 0 \\
& (u, v) \in \mathcal{E}, i \in \mathcal{I}, j \in \mathcal{J}, k \in \mathcal{K} \tag{38}
\end{align*}
$$

Performance benchmark

Goals

- Computational performance evaluation (computational time and solution quality) using CPLEX 12.6
- Target computational time upper bound of 900s (average roll-out time)

Performance benchmark

Goals

- Computational performance evaluation (computational time and solution quality) using CPLEX 12.6
- Target computational time upper bound of 900s (average roll-out time)

Method

- Generate set of 12 instances with $\mathrm{O}(1000)$ demands (at least $\mathrm{O}(100)$ demands per node)
- Network topology of 25 nodes and 90 arcs
- Tuning facility capacity and associated costs

Performance benchmark

Goals

- Computational performance evaluation (computational time and solution quality) using CPLEX 12.6
- Target computational time upper bound of 900s (average roll-out time)

Method

- Generate set of 12 instances with $\mathrm{O}(1000)$ demands (at least $\mathrm{O}(100)$ demands per node)
- Network topology of 25 nodes and 90 arcs
- Tuning facility capacity and associated costs

Execution

- Barrier algorithm at root (rootalg $=4$)
- Barrier algorithm at other nodes (nodealg = 4)
- Balance feasibility and optimality (mipemphasis $=1$)

Performance benchamrk: results

Scenario	Root time (s)	Total time (s)	Final Gap (\%)
sc-0k9-0k9	3037	3294	0.00
sc-1k-1k	2516	2773	0.00
sc-1k2-1k2	2306	2565	0.00
sc-1k5-1k5	2506	2763	0.00
sc-1k8-1k8	2921	3179	0.00
sc-2k-2k	3111	5360	0.00
sc-2k25-2k25	2912	5706	0.00
sc-3k-3k	2616	7189	0.00
sc-3k6-3k6	3270	5967	0.00
sc-4k5-4k5	3309	6029	0.00
sc-6k-6k	2895	9664	0.00
sc-9k-9k	3241	5493	0.00
Avg	2887	4999	0.00
Stdev	333	2164	0.00
Scenario	Root time (s)	Total time (s)	Final Gap (\%)
sc-0k9-2k	3092	3353	0.00
sc-1k-2k	3206	3463	0.00
sc-1k2-2k	3282	3541	0.00
sc-1k5-2k	3337	3595	0.00
sc-1k8-2k	2824	3080	0.00
sc-2k-2k	3120	5405	0.00
sc-2k25-2k	2977	5468	0.00
sc-3k-2k	2847	9365	0.00
sc-3k6-2k	2759	5103	0.00
sc-4k5-2k	2880	5365	0.00
sc-6k-2k	3558	5490	0.00
sc-9k-2k	2628	4931	0.00
Avg	2808	4474	0.00
Stdev	272	1716	0.00

Evaluation instances: topologies and demands

- Topologies (SNDLib database)

Topology	Nodes	Links	Min,Max,Avg Degree	Diameter
abilene	12	15	$1 ; 4 ; 2.50$	3
atlanta	15	22	$2 ; 4 ; 2.93$	3
france	25	45	$2 ; 10 ; 3.60$	8
geant	22	36	$2 ; 8 ; 3.27$	5
germany50	50	88	$2 ; 5 ; 3.52$	9
india35	35	80	$2 ; 9 ; 4.57$	7
newyork	16	49	$2 ; 11 ; 6.12$	2
norway	27	51	$2 ; 6 ; 3.78$	7

- Links capacity and cost from SNDlib database

Evaluation instances: topologies and demands

- Topologies (SNDLib database)

Topology	Nodes	Links	Min,Max,Avg Degree	Diameter
abilene	12	15	$1 ; 4 ; 2.50$	3
atlanta	15	22	$2 ; 4 ; 2.93$	3
france	25	45	$2 ; 10 ; 3.60$	8
geant	22	36	$2 ; 8 ; 3.27$	5
germany50	50	88	$2 ; 5 ; 3.52$	9
india35	35	80	$2 ; 9 ; 4.57$	7
newyork	16	49	$2 ; 11 ; 6.12$	2
norway	27	51	$2 ; 6 ; 3.78$	7

- Links capacity and cost from SNDlib database
- Demands
- Produce set of ten problem instances with 3000 demands
- Demands generated using following distributions:
- Demand size: Pareto distribution commonly used to model file size $f(x)=\frac{\alpha x_{m}^{\alpha}}{x^{\alpha+\mathbf{I}}}, x \geq x_{m}$
- Demand frequence: Generalized Zipf-Mandelbrot distribution (frequency of event occurrence inversely proportional to its rank)

Results: Number of facilities vs. Facility Capacity

Results: Routing Cost vs. Facility Charge

Deeper look (1): Digital goods model

Deeper look (2): Physical goods model

Demand protection: capacitated Reliable Fixed Charge Location Problem (cRFLP)

- Reliability based on levels assignments strategy: $r(r=0, \ldots, J-1)$ level at which a facility serves a given customer demand
- $r=0$: primary assignment
- $r=1$: first backup
- and so on

Demand protection: capacitated Reliable Fixed Charge Location Problem (cRFLP)

- Reliability based on levels assignments strategy: $r(r=0, \ldots, J-1)$ level at which a facility serves a given customer demand
- $r=0$: primary assignment
- $r=1$: first backup
- and so on
- If customer i demand level-r assigned facility failed then level $-(r+1)$ assigned facility serves this demand as backup

Demand protection: capacitated Reliable Fixed Charge Location Problem (cRFLP)

- Reliability based on levels assignments strategy: $r(r=0, \ldots, J-1)$ level at which a facility serves a given customer demand
- $r=0$: primary assignment
- $r=1$: first backup
- and so on
- If customer i demand level-r assigned facility failed then level-($r+1)$ assigned facility serves this demand as backup
- Objective function:

$$
\begin{equation*}
\sum_{j \in \mathcal{J}} \varphi_{j} y_{j}+\sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \sum_{k \in \mathcal{K}} \sum_{r=0}^{J-1} d_{i j} a_{i j k} x_{i j k r} q^{r}(1-q) \tag{39}
\end{equation*}
$$

Demand protection: capacitated Reliable Fixed Charge Location Problem (cRFLP)

- Reliability based on levels assignments strategy: $r(r=0, \ldots, J-1)$ level at which a facility serves a given customer demand
- $\mathrm{r}=0$: primary assignment
- $r=1$: first backup
- and so on
- If customer i demand level-r assigned facility failed then level-($r+1)$ assigned facility serves this demand as backup
- Objective function:

$$
\begin{equation*}
\sum_{j \in \mathcal{J}} \varphi_{j} y_{j}+\sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \sum_{k \in \mathcal{K}} \sum_{r=0}^{J-1} d_{i j} a_{i j k} x_{i j k r} q^{r}(1-q) \tag{39}
\end{equation*}
$$

- First term: total fixed installation cost
- Second term: expected transport cost where facility j serves customer i demand if
- its lower-level assigned facilities all disrupted: occurrence probability q^{r}
- and facility j still available: occurrence probability $1 q$

Results: Demand Protection (cRFLP) vs. Rerouting (MSMP-cFLFRP)

Total and allocation cost vs. Facility capacity

Results: Main observations

- As facility capacity increases, total cost (R) of re-routing strategy remains lower than total cost (P) of protection strategy (two levels of protection)
- Higher allocation cost required by cRFLP compared to MSMP-cFLFRP because of smaller number of installed facilities
- Higher routing cost required by MSMP-CFLFRP because of load-dependent routing cost instead of graph distance cost

Results: Main observations

- As facility capacity increases, total cost (R) of re-routing strategy remains lower than total cost (P) of protection strategy (two levels of protection)
- Higher allocation cost required by cRFLP compared to MSMP-cFLFRP because of smaller number of installed facilities
- Higher routing cost required by MSMP-CFLFRP because of load-dependent routing cost instead of graph distance cost
- Highest gain (36\%) obtained when tradeoff between spatial distribution of facility capacity (over 8 locations) and routing cost to access them reaches its optimal value

Results: Main observations

- As facility capacity increases, total cost (R) of re-routing strategy remains lower than total cost (P) of protection strategy (two levels of protection)
- Higher allocation cost required by cRFLP compared to MSMP-cFLFRP because of smaller number of installed facilities
- Higher routing cost required by MSMP-CFLFRP because of load-dependent routing cost instead of graph distance cost
- Highest gain (36\%) obtained when tradeoff between spatial distribution of facility capacity (over 8 locations) and routing cost to access them reaches its optimal value
- Implication: routing metric would require accounting from facility load distribution and data availability

Conclusion and Future Work

Conclusion

- Propose a mixed-integer formulation for combined multi-source multi-product capacitated facility location-flow routing problem (MSMP-cFLFRP)
- Our formulation accounts for specifics of digital object storage and supply Note: known formulations translate multi-product problem as single-commodity problem solved separately for each product
- Approximation of fractional constraints enables to solve to optimality smallto medium-size instances with an order of thousands of demands
- Exploitation in demand assignment re-routing scheme (comparison to demand protection scheme)

Conclusion and Future Work

Conclusion

- Propose a mixed-integer formulation for combined multi-source multi-product capacitated facility location-flow routing problem (MSMP-cFLFRP)
- Our formulation accounts for specifics of digital object storage and supply Note: known formulations translate multi-product problem as single-commodity problem solved separately for each product
- Approximation of fractional constraints enables to solve to optimality smallto medium-size instances with an order of thousands of demands
- Exploitation in demand assignment re-routing scheme (comparison to demand protection scheme)

Future Work

- Improve computation method to avoid excessive computation time on large-instances with order of 10 k demands

