Kumori Steering Cloud Traffic at IXPs to Improve Resiliency

Antoine Fressancourt, Cristel Pelsser, Maurice Gagnaire

17-03-2016

Context: Software-Defined Networking in a WAN environment

Inter-datacenter connectivity

Current state of affairs and limitations

- ► To ensure cloud applications resiliency, CSP deploy applications in several datacenters → Need to connect datacenters together
- Today: Dual private links forming a full mesh between datacenters
 - Costly solution
 - Dependency on the network connectivity provider
 - Long setup time

In the near future

Connectivity needs related to hybrid cloud model (IDG study)

- ► Hybrid cloud → Deployment of applications in private datacenters AND in public clouds.
- Deployment model gaining popularity (see IDG Study "The rise of Hybrid IT", 2014)

an atos company

STITUTE

Software-Defined Internet Exchange (SDX)

- Research work started at Princeton
- Goal: Replace BGP at Internet exchanges to enable new use cases:
 - Inbound Traffic Engineering
 - Application-specific peering
 - DDoS mitigation
- SDX controller implementation available
- Test deployments in some regional IXPs: Toulouse, Atlanta, "A large European IXP"...

Presentation of Kumori

• • • • • • e-payment services

Overview of the Kumori architecture

- Kumori is an intermediate solution between
 - Using private MPLS circuits
 - Expensive
 - Long setup delay for each destination
 - SLA-based resiliency
 - Using the **plain Internet**
 - Cheaper
 - Works out of the box
 - Best effort

- Using an overlay of nodes at Internet exchange points and network operator facilities
 - Resiliency through capacity to choose alternative routes in the Internet
 - Taking advantage of connectivity ecosystem at IXPs
 - Software control of the path by the CSP

Kumori in details

SDN-based overlay network architecture

Goal:

- Influence the way traffic is routed over the Internet between DCs
- Fast reroute over the overlay

Architecture composed of **3 elements**:

- Routing inflection points
- Egress points
- Central controller

IIJ INNOVATION

Routing inflection points

SDN-based overlay network architecture

Role:

- Apply routing policy provided by the controller
- Provide inter-DC network measurements to the controller

Location:

- Internet Exchange Points
- Inside ISP
 networks (cache / CDN area)

Egress points

SDN-based overlay network architecture

Role:

- Contact point between intra and inter DC domains
- Gateway between
 Segment routing and overlay routing
- Provide intra-DC net. measurements to the controller

Location:

 Router connecting DC to a given ISP

TELECOM ParisTech worldline

an atos company

Central controller

SDN-based overlay network architecture

Role:

- Provide routing rules to the various elements in the architecture
- Gather measurements to modify routing policy
- React to detected failures

Location:

 At the CSP premises

Evaluating Kumori

(And having a better view on path diversity accross the Internet)

What can we compare to?

Resilient Overlay Network (2001)

- First major project using an overlay approach to enhance link resiliency
- ► Goal:
 - Detecting link or node failures and routing traffic around them
 - Converge around failures quicker than BGP: 20 s Vs. ~5 min.
- Principle
 - Active probing between all node pairs
 - Link-state routing in the overlay
 - Robust
 - Does not scale beyond ~50 nodes

VATION

Evaluation methodology

iPlane dataset

- Use of iPlane dataset
 - Summary of **traceroutes** performed on the 15th of February 2015
 - Undirected weighted graph with:
 - **190 028** vertices
 - 916 390 edges
- Identification of nodes belonging to 12 major CSPs
 - Amazon, Microsoft, Google, Atos, Dimension Data, WIDE...
 - **1 604** vertices
- Identification of nodes belonging to IXPs
 - Combining PeeringDB and Packet Clearing House
 - 2 177 vertices
- Measurements
 - Shortest paths among CSP pairs \rightarrow RON applicability
 - Shortest paths between CSP and IXP nodes \rightarrow Our architecture's applicability

Cloud services providers together

Performance / Path length

- Better or equal in
 97.69 % of the cases
- Strictly better in5.72 % of the cases

Performance / number of nodes needed

- 80 % of shortest paths reachable with 9.43 % less nodes
- 99 % of shortest paths reachable with 50.41 % less nodes

Mixed benefits depending on the CSP

2 major groups of CSPs

For major CSPs:

 Benefits on the number of nodes required to access paths of similar length

For smaller size CSPs

 Benefits on the length of the path accessible via the architecture

IIJ INNOVATION INSTITUTE

Mixed benefits depending on the CSP

Cumulative distribution of # nodes needed to access shortest paths

Conclusion and next steps

To conclude...

Summary

- Design of an architecture to enhance interdatacenter connectivity resiliency
- Compared with RON:
 - Shortest paths for small CSPs
 - Paths accessible via less nodes for large CSPs

Future works

- Pushing the graph study
 - Investigation of multihoming benefits
 - Path diversity
- Evaluation on real testbed
 - Feasability of real time measurement and reaction
 - Hysteresis effect
 - Impact on ISPs

19 | 17-03-2016 | Antoine Fressancourt CTO / R&D / Trusted Services IIJ INNOVATION INSTITUTE

..........

Thanks

For more information please contact me:

antoine.fressancourt@worldline.com antoine.fressancourt@telecom-paristech.fr

Worldline is a registered trademark of Atos Worldline SAS. June 2013 © 2013 Atos. Confidential information owned by Atos Worldline, to be used by the recipient only. This document, or any part of it, may not be reproduced, copied, circulated and/or distributed nor quoted without prior written approval from Atos Worldline.

17-03-2016

Results summary

	General	Amazon	Atos	Dimension Data	Facebook	Google	Microsoft	OVH	Rackspace	Virtustream	WIDE	GEANT	Equinix
CSP Node pairs	1285606	12880	903	153	41328	255970	13861	6441	3570	6	780	6670	10585
		, 							, , ,				
Better or equal	1255950	10748	883	148	41238	255476	10982	6370	3494	6	753	5830	8851
Percentage	97,69	83,45	97,79	96,73	99,78	99,81	79,23	98,9	97,87	100	96,54	87,41	83,62
Strictly better	73511	1361	446	87	807	6783	1790	828	295	1	352	2164	
Percentage	5,72	10,57	49,39	56,86	1,95	2,65	12,91	12,86	8,26	16,67	45,13	32,44	37,11
CSP Nodes	1604	161	43	18	288	716	167	114	85	4	40	116	146
IXP - 80%	15	6	12	9	1	1	11	6	5	3	16	23	23
IXP - 90 %	46	9	16	11	6	21	16	13	7	3	20	34	35
IXP - 95%	74	13	18	12	13	39	20	19	8	3	22	40	42
IXP - 99%	121	20	20	12	21	66	27	23	11	3	23	44	48
CSP - 80%	38	15	13	7	1	1	26	3	6	3	9	17	23
CSP - 90%	104	22	17	9	4	20	43	5	12	3	13	23	36
CSP - 95%	180	29	19	10	10	51	51	7	16	3	15	29	43
CSP - 99%	244	36	21	10	22	79	58	11	20	3	16	33	49
Benefits 80 %	9,43	25	4,76	-16,67	0	0	25,86	-13,04	5	0	-30,43	-13,64	0
Benefits 99%	50,41	44,44	4,76	-16,67	4,55	16,46	53,45	-52,17	45	0	-30,43	-25	2,04
CSP-IXP matches	6	2	0	0	0	2	2	0	0	0	12	2	14

21 | 17-03-2016 | Antoine Fressancourt CTO / R&D / Trusted Services

