The k-Node-Connected Subgraph Problem: Valid inequalities and Branch-and-Cut

Ibrahima Diarrassouba, <u>Meriem MAHJOUB</u> A.Ridha MAHJOUB

The kNCSP: Polyhedral analysis and B&C

Outline

- Formulation
- Valid inequalities
- 2 Structural properties and reduction operations
- Branch-and-Cut
- 4 Conclusion and Perspectives

The *k*NCSP

Definition

A graph G = (V, E) is called *k*-node-connected if for every pair of nodes *i*, $j \in V$, there are at least *k* node-disjoint paths between *i* and *j*.

The *k*NCSP

The kNCSP: Polyhedral analysis and B&C

The *k*NCSP

Given a weight function c on E that associates with an edge $e \in E$ the weight $c(e) \in \mathbb{R}$, the *k*-Node-Connected Subgraph Problem is to find a *k*-node-connected spanning subgraph H = (V, F) of G such that $\sum_{e \in F} c(e)$ is minimum.

Related work

• The kNCSP is NP-hard for $k \ge 2$ [Garey and Johnson (1979)].

Related work

- The kNCSP is NP-hard for $k \ge 2$ [Garey and Johnson (1979)].
- Bendali et al. (2010), Didi Biha and Mahjoub (1996), Chopra (1994), investigated the edge version of the problem (*k*ECSP).

Related work

- The kNCSP is NP-hard for $k \ge 2$ [Garey and Johnson (1979)].
- Bendali et al. (2010), Didi Biha and Mahjoub (1996), Chopra (1994), investigated the edge version of the problem (kECSP).
- Mahjoub and Nocq have studied the kNCSP when k = 2 (1998).

Related work

- The kNCSP is NP-hard for $k \ge 2$ [Garey and Johnson (1979)].
- Bendali et al. (2010), Didi Biha and Mahjoub (1996), Chopra (1994), investigated the edge version of the problem (*k*ECSP).
- Mahjoub and Nocq have studied the kNCSP when k = 2 (1998).
- Grötschel, C.L. Monma and M. Stoer (1991) studied *k*-node-connected graphs within a more general survivability model.

Formulation Valid inequalities

The kNCSP Formulation

Valid inequalities

2 Structural properties and reduction operations

3 Branch-and-Cut

Formulation

Formulation

Cut inequalities

Every cut must contain at least k edges.

 $x(\delta_G(W)) \ge k$

Formulation Valid inequalities

Formulation

Node-cut inequalities

Every node-cut must contain at least k - |Z| edges.

 $x(\delta_{G\setminus Z}(W)) \ge k - |Z|$

Formulation Valid inequalities

Integer programming formulation of kNCSP

$$\text{Minimize } \sum_{e \in E} c(e) x(e)$$

s.t.

$$\begin{aligned} x(e) &\geq 0 & e \in E, \\ x(e) &\leq 1 & e \in E, \\ x(\delta_G(W)) &\geq k & \emptyset \neq W \subseteq V, \\ x(\delta_{G\setminus Z}(W)) &\geq k - |Z| & \emptyset \neq Z \subseteq V; \ |Z| \leq k - 1, \\ \emptyset \neq W \subseteq V \setminus Z. \end{aligned}$$
 (4)

Formulation Valid inequalities

1 The *k*NCSP

- Formulation
- Valid inequalities

2 Structural properties and reduction operations

3 Branch-and-Cut

The kNCSP

Structural properties and reduction operations Branch-and-Cut Conclusion and Perspectives

Formulation Valid inequalities

Notations

Given a partition $\pi = (V_1, ..., V_p)$, $p \ge 2$, we denote by G_{π} the subgraph induced by π , that is, the graph obtained by contracting the sets V_i , i = 1, ...p. We denote by $\delta_G(\pi)$ the edge set of G_{π} .

The kNCSP: Polyhedral analysis and B&C

The kNCSP

Structural properties and reduction operations Branch-and-Cut Conclusion and Perspectives

Formulation Valid inequalities

Notations

Given a partition $\pi = (V_1, ..., V_p)$, $p \ge 2$, we denote by G_{π} the subgraph induced by π , that is, the graph obtained by contracting the sets V_i , i = 1, ...p. We denote by $\delta_G(\pi)$ the edge set of G_{π} .

The kNCSP: Polyhedral analysis and B&C

Formulation Valid inequalities

Node-partition inequalities

Theorem

Consider a subset $Z \subset V$, such that $|Z| \leq k - 1$, and let $\pi = V_1, ..., V_p$, $p \geq 2$ be a partition of $V \setminus Z$. The following inequality is valid for kNCSP(G).

$$x(\delta_{G\setminus Z}(\pi)) \geq \begin{cases} \lceil \frac{p(k-|Z|)}{2} \rceil & \text{if } |Z| \leq k-2\\ p-1 & \text{if } |Z| = k-1. \end{cases}$$
(5)

Formulation Valid inequalities

SP-node-partition inequalities

Theorem

Consider a partition $\pi = (V_1, ..., V_p)$ of $V \setminus Z$, such that G_{π} is series-parallel, then the inequality

$$x(\delta_{G\setminus Z}(\pi)) \ge \lceil \frac{k - |Z|}{2} \rceil p - 1$$
(6)

is valid for kNCSP(G).

The kNCSP

Structural properties and reduction operations Branch-and-Cut Conclusion and Perspectives

Formulation Valid inequalities

SP-node-partition inequalities

Figure : An SP-node-partition configuration with k = 5 and Z = 2

The kNCSP

Structural properties and reduction operations Branch-and-Cut Conclusion and Perspectives

Formulation Valid inequalities

SP-node-partition inequalities

Figure : An SP-node-partition configuration with k = 5 and Z = 2

Formulation Valid inequalities

F-node-partition inequalities

Theorem

Let $Z \subset V$ with $|Z| \leq k - 1$. Consider a partition $\pi = (V_0, ..., V_p)$ of $V \setminus Z$, and $Z_i = \{z \in Z \mid \exists e \in \delta(\{z\}, V_i)\}$ for i = 1, ..., p, and let F be a subset of $\delta_{G \setminus Z}(V_0)$ such that $\sum_{i=0}^{p} (k - |Z_i|) - |F|$ is odd. Then the inequality

$$x(\delta_{G\setminus Z}(\pi\setminus F)) \ge \lceil \frac{\sum_{i=0}^{p} (k - |Z_i|) - |F|}{2} \rceil$$
(7)

is valid for kNCSP(G).

The kNCSP

Structural properties and reduction operations Branch-and-Cut Conclusion and Perspectives

Formulation Valid inequalities

Facets of kNCSP(G)

Figure : An *F*-node-partition configuration with k = 5

The kNCSP

- Formulation
- Valid inequalities

2 Structural properties and reduction operations

3 Branch-and-Cut

4 Conclusion and Perspectives

Structural properties

Let \overline{x} be an extreme point of P(G, k).

$$(\mathsf{Q}) \begin{cases} x(e) = 1, & \forall e \text{ such that } \overline{x}(e) = 1, \\ x(e) = 0, & \forall e \text{ such that } \overline{x}(e) = 0, \\ x(\delta_G(W)) = k, & \forall \delta_G(W) \in \mathscr{C}^*_e(\overline{x}), \\ x(\delta_{G\setminus Z}(W)) = k - |Z|, & \forall \delta_{G\setminus Z}(W) \in \mathscr{C}^*_n(\overline{x}), \end{cases}$$

Proposition

Let $\delta(W)$ be a cut of G tight for \overline{x} . Then system (Q) can be chosen so that $\mathscr{C}_e^*(\overline{x}) \cup \mathscr{C}_n^*(\overline{x}) \subseteq \mathscr{C}(\overline{x}, W)$.

- $heta_1$: Delete an edge $e \in E$ such that $\overline{x}(e) = 0$.
- θ_2 : Contract a node subset $W \subseteq V$ such that G[W] is *k*-edge connected, $\overline{x}(e) = 1$ for all $e \in E(W)$ and $\overline{x}(\delta(W)) = k$.
- $\begin{aligned} \theta_3 : & \text{Contract a node subset } W \subseteq V \text{ such that } |W| \geq 2, \\ & |\overline{W}| \geq 2, \, \overline{x}(e) = 1 \text{ for all } e \in E(W) \text{, and} \\ & |\delta_G(W)| = k. \end{aligned}$
- θ_4 : Replace a set of parallel edges by only one edge.

Reduction operations

The kNCSP: Polyhedral analysis and B&C

The kNCSP: Polyhedral analysis and B&C

Reduction operations

Proposition

Let G' = (V', E') and \overline{x}' be the graph and the solution obtained from G and \overline{x} , respectively, by the application of Operations $\theta_1, ..., \theta_4$. Then \overline{x}' is an extreme point of P(G', k).

1 The kNCSP

- Formulation
- Valid inequalities

2 Structural properties and reduction operations

Branch-and-Cut

④ Conclusion and Perspectives

Branch-and-Cut

- The algorithm has been implemented in C++ using CPLEX 12.5 with the default settings.
- All experiments were run on a 2.10GHzx4 Intel Core(TM) i7-4600U running linux with 16 GB of RAM.
- We have tested our approach on several instances derived from SNDlib and TSPlib topologies.

Branch-and-Cut

-

Instance	k	#EC	#NC	#FNPC	#SPNC	#NPC	COpt	Gap(%)	NSub	CPU
polska 12	3	7	121	0	5	0	51	0.00	1	0 :00 :04
france 25	3	71	807	8	14	1	3254	0.39	17	1 :03 :55
india 35	3	18	270	9	3	0	489	1.45	2	2:04:21
pioro 40	3	11	546	0	2	1	5637	0.00	1	0:42:07
berlin 52	3	95	914	14	83	0	16524	0.09	6	3 :14 :23
eil 76	3	85	1674	9	142	1	-	0.12	6	5 :00 :00
atlanta 15	4	0	72	2	-	0	4615	0.00	1	0 :00 :25
sun 27	4	0	9172	74	-	0	6867	0.00	1	0:21:31
india 35	4	25	4165	7	-	2	547	6.45	2	2:01:59
pioro 40	4	18	598	4	-	0	8096	0.00	1	0:31:14
berlin 52	4	145	1045	19	-	3	18268	0.05	3	3 :14 :23
eil 76	4	34	1832	8	-	0	971	0.07	2	0:24:32
france 25	5	0	21284	0	2	6	6439	0.91	5	2 :23 :00
bays 29	5	2	40972	0	0	1	28411	1.3	2	2 :12 :12
india 35	5	0	41344	0	4	2	638	2.91	4	1:46:04
pioro 40	5	8	1342	7	3	0	11756	0.25	4	0:58:24
berlin 52	5	76	3451	25	0	5	21763	0.15	5	4 :14 :23
st 70	5	4	847	21	1	0	-	9.12	1	5:00:00

Table : Results for k = 3, 4, 5

Branch-and-Cut

Instance	#EC	#NC	#FNPC	#SPC	#NPC	COpt	Gap(%)	NSub	CPU
abilene 12	20	2211	0	3	2	214	1.29	12	0 :00 :18
nobel-us 14	29	775	4	7	7	219	0.57	44	0 :01 :15
atlanta 15	16	143	6	1	1	3265	0.15	3	0 :01 :03
nobel germany 17	83	5607	7	4	1	53	1.3	21	0 :14 :52
ulysses22 22	49	22633	5	0	5	141	0.74	10	0 :21 :08
janos-us 26	42	35782	6	2	0	282	1.45	26	3 :14 :53
sun 27	41	910	9	8	0	4771	0.87	6	3:31:11
norway 27	48	1214	5	7	6	6864	2.32	2	2 :02 :07
bays 29	66	227	2	8	6	14791	3.1	6	2 :03 :52
india 35	18	270	9	3	0	489	1.45	2	2 :04 :21
pioro_40	33	725	1	5	2	-	7.25	14	5 :00 :00

Table : Results for k = 3 without reduction operations

Branch-and-Cut

With the additional valid inequalities

Without the additional valid inequalities

Conclusion

• The *k*-node connected subgraph problem.

Conclusion

- The *k*-node connected subgraph problem.
- Integer linear programming formulation and valid inequalities.

Conclusion

- The k-node connected subgraph problem.
- Integer linear programming formulation and valid inequalities.
- Stuctural properties and reduction operations.

Conclusion

- The k-node connected subgraph problem.
- Integer linear programming formulation and valid inequalities.
- Stuctural properties and reduction operations.
- Branch-and-Cut algorithm.

Perspectives

• Investigate the structural properties of the linear relaxation.

Perspectives

- Investigate the structural properties of the linear relaxation.
- Study the problem when a bound is considered on the connectivity paths.

References

I. Diarrassouba, H. Kutucu and A. R. Mahjoub (2013)

Two Node-Disjoint Hop-Constrained Survivable Network Design and Polyhedra

ENDM

- F. Bendali, I. Diarrassouba, A.R. Mahjoub, J. Mailfert (2010)
 A Branch-and-Cut algorithm for the k-edge-connected subgraph problem <u>Networks</u>
- A. R. Mahjoub, Charles Nocq (1999)
 On the Linear Relaxation of the 2-node Connected Subgraph Polytope Discrete Applied Mathematics
- M. Grötschel, C.L. Monma, M. Stoer (1993)
 Handbook in Operations Research and Management Science <u>Networks</u>

Thank you for your attention

The kNCSP: Polyhedral analysis and B&C