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Disclaimer: This is a tutorial

Do not expect original research here.

Just stuff copied from the web, plus some structuring thoughts.
(plus a few own drawings...)



  

Outline: Resilience in SDN and NFV

● Resilience in SDN
– What is SDN, anyway?

– Data plane resilience
● Link failures
● Path failures
● Node failures

– Control plane resilience
● Control link failures
● Controller node failures



  

Outline: Resilience in SDN and NFV 
(cont.)

● Resilience in NFV
– What is NFV, then?

– NFVI failures

– Service Function failures

– „Microservices“

● Conclusions
– „Treat your network and servers as cattle, not pets!“

– Automate as much as you can (using chef, puppet, salt, ansible)

– Reboot, re-install often (check if you are resilient)

– Future hardware comes in white boxes (OPC, TIP) 



Terminology: SDN

SDN: Programming Network Functions

       

           As f is most of the time non-steady, use discrete value tables

Match Action Output Stats

IP dst==8.8.8.8 Set L2_dst=03:04:05:06:07:01; Set L2_src=01:02:03:04:05:06; decr. TTL Port 3 #packets,
#bytes

IP dst==4.4.4.4 Set L2_dst=04:05:06:07:08:09; Set L2_src=01:02:03:04:05:06; decr. TTL Port 2 #packets,
#bytes

)(xfy 

)(matchactionoutput 



SDN: Software Defined Networks

• Make f programmable to implement
– Encryption (e.g., IPSec)
– Compression / network coding
– Transcoding
– Stateful firewalls  

• For most applications, simply have to transfer 
a packet from A to B

–  f is simple and stateless
 OpenFlow can be used to write the forwarding 

table



  

SDN is not that simple, though...

● OF-DPA 1.0 pipeline
– (C) Broadcom



  

Programming the network functions

● More programmability with real programming 
languages like P4
– P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, 

J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. 
Varghese, D. Walker: “P4: Programming Protocol-
Independent Packet Processors”, ACM Sigcomm 2014

● But if f is really complicated?
– Beyond action lists or methods?

● Download and execute code on x86 platforms



Network function virtualization

• NFV: Separate functionality from ASIC
– Split out code blocks that implement f
– Place f into programmable hardware
– X86 or ARM platforms

Commodity hardware

Centralized Control

Cloud-based Management



So, how does SDN/NFV add value?

Commodity hardware

Centralized Control

Cloud-based Management

Cost reduction



Definitions (cont.)

● Resilience:

"the ability [of a system] to cope with change"

– Here: the ability to restore normal service behavior after 
certain failures in the system

● Thesis: Restoration of stateless services is easy
– Try and make all services state-less

● By moving state out

https://en.wikipedia.org/wiki/Resilience



SDN: Data plane resilience: Link Failures

● Deal with the 
problems
bottom-up

● First: Mitigate link 
or port failures

● Two ways:
– Re-route

– Provide back-up links

https://www.opennetworking.org/sdn-resources/sdn-definition



  

Multi-Chassis Link Aggregation

● Compute servers are typically connected to 2 ToR 
switches

● What if SDN ends at the switch ports?

https://upload.wikimedia.org/wikipedia/commons/2/2f/Using_Multi-Chassis_LAG_%28MC-LAG%29_for_High_Availability.png

Switch

Server



  

Example: Link failure

● Ctl implements L2 
learning switch

● Srv_A uses link bonding
● Link between SW1 and 

Srv_B fails
● Controller re-routes traffic
● … SW2 stops forwarding

– Why?

Srv_A

Srv_B

SW1 SW2

Ctl



  

Example: Link failure

● In-built src learning table 
has same MAC from 2 ports
– And 'thinks' it is a loop

● One (not very clever) 
solution:

Create fail-over 
VLAN/VXLAN and fail-over 
rules that push and pop

 

Srv_A

Srv_B

SW1 SW2

Ctl

V
LA

N



  

Example: Link failure

● When Ctl spans the 
servers as well, fail-over 
groups can be used

● Create fail-over group in 
Srv-B

 

Srv_A

Srv_B

SW1 SW2

Ctl

V
LA

N

https://floodlight.atlassian.net/wiki/display/floodlightcontroller/How+to+Work+with+Fast-
Failover+OpenFlow+Groups#HowtoWorkwithFast-FailoverOpenFlowGroups-OpenFlowGroups

Srv_B



SDN: Data plane resilience: Path failures

● Again, depending on the size of the 
domain, re-routing may be easy

● When path crosses domain borders, 
BFD or Eth OAM is used

● Implementation in controller is 
possible, but has low performance

https://events.nordu.net/display/ndn2012web/Ethernet+OAM+integration+in+OpenFlow

● Better use in-built hardware features of 
commercial ASICs



  

Use of hardware features is difficult

● Complete knowledge of underlying pipeline is 
required!

● c.f. TTP discussion 
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-
specifications/openflow/OpenFlow%20Table%20Type%20Patterns%20v1.0.pdf



SDN: Data plane resilience: Node failures

● What to do when the switch is down? 
– Replace it!

– In the meantime, re-route around the failed node (delete all 
entries in the neighbor nodes)

● After replacement, how can the switch's state 
be re-established?
– Address configuration

– Operating system

– Feature set

– Controller address

– Tunnels, fail-over groups, flowmods?



  

 ONIE - Open Network Install 
Environment

● Combines a boot loader with a modern Linux kernel and BusyBox
● Provides an environment for installing any network OS
● Switch uses mgt network interface to dhcp
● Receives address of image server to fetch OS from 

https://github.com/opencomputeproject/onie/wiki/Quick-Start-
Guide



  

Install the OS image via ONIE

BCM ASIC

BCM SDK/OF-DPA

OF endpoint (indigo)

OF controllerONIE



  

Retrieve controller address via 
dhcp/salt/puppet/...

BCM ASIC

BCM SDK/OF-DPA

OF endpoint (indigo)

baseboxd

ONIE



  

Extend control over a domain of 
switches

BCM ASIC

BCM SDK/OF-DPA
OF endpoint (indigo)

baseboxd

BCM ASIC

BCM SDK/OF-DPA
OF endpoint (indigo)

BCM ASIC

BCM SDK/OF-DPA
OF endpoint (indigo)

Shim OF controller
ONOS ODL



  

And finally, integration into 
OpenStack

BCM ASIC

BCM SDK/OF-DPA
OF endpoint (indigo)

baseboxd

BCM ASIC

BCM SDK/OF-DPA
OF endpoint (indigo)

BCM ASIC

BCM SDK/OF-DPA
OF endpoint (indigo)

Shim OF controller
ML-2

neutron

Neutron rules 
Create tenant 
networks 
    in switches



SDN: Data plane resilience: Node failures

● What to do when the switch is back up again?
– (In the meantime, controller re-routed around the failed switch)

● Controller needs to re-populate the switch's fwd 
table

● This may involve re-calculating previously 
embedded paths
– And re-populate the neighbor switches, as well

● It may be best to keep all state as high as 
possible 
– Re-calculate all routes from top to bottom.



  

SDN: Control plane resilience: controller link

● Assume a setting of switches and controllers
● Switches are connected to multiple controllers 

(virtualization left aside here)
● The default role of a controller is 

OFPCR_ROLE_EQUAL
– controller has full access to the switch
– receives all asynchronous messages (such as 

packet-in, flow-removed)
– Can send commands to the switch

● In role OFPCR_ROLE_SLAVE
– the controllerhas read-only access to the switch. 

By default, the controller does not receive switch 
asynchronous messages, apart from Port-status 
messages.

● Role OFPCR_ROLE_MASTER similar to EQUAL  

SW1 SW2

Ctl
(SLAVE)

Ctl 
(MASTER)



  

SDN: Control plane resilience: controller node

● Originally, OpenFlow controllers like NOX were 
single points of failure
– With ONIX (Martin Casado, later Nicira, later 

VmWare) controllers were split into a HA database 
and stateless frontends.

– The concept of NIB (network information base) was 
born:

http://yuba.stanford.edu/~casado/onix-osdi.pdf



  

ONOS, starting form Cassandra
(now using RAMCloud)
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https://docs.google.com/presentation/d/1pPOXPy4_KagPcrwgQOX332uZn7KXK
WfMEe7vNfhFDqo/edit?usp=sharing



  

RAMCloud

● Highly performant distributed key/value store 
based on raft consensus algorithm

● Hierarchical consensus

RAMCloud stores all of its information in the main memories 
of commodity servers, using hundreds or thousands of such 
servers to create a large­scale storage system. 

Because all data is in DRAM at all times, a RAMCloud can 
provide 100­1000x lower latency than disk­based systems and 
100­1000x greater throughput. 

Although the individual memories are volatile, a RAMCloud 
can use replication and backup techniques to provide data 
durability and availability equivalent to disk­based 
systems.



  

Open Network Operating System 
(ONOS)

http://sdnhub.org/tutorials/onos/



  

Update on controllers and data bases

http://ravel-net.org/docs/SOSR16slide2.pdf
● Back to SQL for structured queries

– Performance??? Looks OK (few ms for rule update)
● Depends on the application

http://ravel-net.org/docs/SOSR16slide2.pdf


  

Resilience in NFV

NFVI failure 
Covered by 
OpenStack, 
VmWare
– But my VNF is gone!

– Use cloud-init to 
initially configure 
VNF

– But dynamic state?

– How is this EMS 
thing done?

This one is new compared to original NFV arch.
Is used for scaling in and out.



  

Resilience in NFV: Is my VNF up? 

● NFV == OpenStack == KVM (at least until recently)

● VNF is a set of processes inside a VM
– VNF may be down, though the VM may still be running

– NFVI has no means to detect this!

● Can the „EMS“ find out? (original: element 
management system)
– Constant monitoring required

– EMS turns into „service control plane“



Resilience in NFV: Moving state out

http://www.etsi.org/deliver/etsi_gs/NFV-INF/001_099/001/01.01.01_60/gs_nfv-inf001v010101p.pdf



Reinventing services: Micro-services

● Containers (docker, lxc) ideally run a 
single process

● If process is done, container is down
● How is logging, monitoring etc. done?

– There are tools for docker.io that allow to collect 
logging to stdout

– How would this be split up into services?

● Use service-specific logging, i.e. 
integrate the control plane (“EMS”) 



Reinventing Linux: CoreOS, systemd, etcd

● Systemd is a replacement for SysV init() 
process
– Accepted by major Linux distros (Fedora, Ubuntu)

– Configuration of all services via /etc/systemd/… 
directory

– Etcd (“/etc distributed”)
● Distributed KV store
● Raft consensus

– Fleet allows remote 
steering of VNFs via etcd 
and systemd 

https://github.com/coreos/etcd



CoreOS worker set running etcd

● Workers can log and receive data and instructions 
via /etc
– Example: central services manage pool of datapath ids for 

switches, workers fetch a unique id before connecting to controller.

https://deis.com/blog/2016/coreos-overview-p2



Conclusions

● Resilience is preparation for loss of state
● General approach is to move out state to HA data 

bases
● SDN controllers and NFV workers use the same 

approach
● Re-designing NFVs to fit the model is essential, 

otherwise NFV resilience requirements cannot be met
● Move out as much state as possible from switches and 

NFVs
– Replace rather than repair

– In other words: treat switches and servers as cattle, not pets.
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