

Resilience in SDN and NFV:
How to divide state from stateless

DRCN 2016 Paris
Tutorial

Hagen Woesner,
BISDN GmbH, Berlin, Germany

hagen@bisdn.de

March, 15th, 2016

Disclaimer: This is a tutorial

Do not expect original research here.

Just stuff copied from the web, plus some structuring thoughts.
(plus a few own drawings...)

Outline: Resilience in SDN and NFV

● Resilience in SDN
– What is SDN, anyway?

– Data plane resilience
● Link failures
● Path failures
● Node failures

– Control plane resilience
● Control link failures
● Controller node failures

Outline: Resilience in SDN and NFV
(cont.)

● Resilience in NFV
– What is NFV, then?

– NFVI failures

– Service Function failures

– „Microservices“

● Conclusions
– „Treat your network and servers as cattle, not pets!“

– Automate as much as you can (using chef, puppet, salt, ansible)

– Reboot, re-install often (check if you are resilient)

– Future hardware comes in white boxes (OPC, TIP)

Terminology: SDN

SDN: Programming Network Functions

 As f is most of the time non-steady, use discrete value tables

Match Action Output Stats

IP dst==8.8.8.8 Set L2_dst=03:04:05:06:07:01; Set L2_src=01:02:03:04:05:06; decr. TTL Port 3 #packets,
#bytes

IP dst==4.4.4.4 Set L2_dst=04:05:06:07:08:09; Set L2_src=01:02:03:04:05:06; decr. TTL Port 2 #packets,
#bytes

)(xfy 

)(matchactionoutput 

SDN: Software Defined Networks

• Make f programmable to implement
– Encryption (e.g., IPSec)
– Compression / network coding
– Transcoding
– Stateful firewalls

• For most applications, simply have to transfer
a packet from A to B

– f is simple and stateless
 OpenFlow can be used to write the forwarding

table

SDN is not that simple, though...

● OF-DPA 1.0 pipeline
– (C) Broadcom

Programming the network functions

● More programmability with real programming
languages like P4
– P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,

J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G.
Varghese, D. Walker: “P4: Programming Protocol-
Independent Packet Processors”, ACM Sigcomm 2014

● But if f is really complicated?
– Beyond action lists or methods?

● Download and execute code on x86 platforms

Network function virtualization

• NFV: Separate functionality from ASIC
– Split out code blocks that implement f
– Place f into programmable hardware
– X86 or ARM platforms

Commodity hardware

Centralized Control

Cloud-based Management

So, how does SDN/NFV add value?

Commodity hardware

Centralized Control

Cloud-based Management

Cost reduction

Definitions (cont.)

● Resilience:

"the ability [of a system] to cope with change"

– Here: the ability to restore normal service behavior after
certain failures in the system

● Thesis: Restoration of stateless services is easy
– Try and make all services state-less

● By moving state out

https://en.wikipedia.org/wiki/Resilience

SDN: Data plane resilience: Link Failures

● Deal with the
problems
bottom-up

● First: Mitigate link
or port failures

● Two ways:
– Re-route

– Provide back-up links

https://www.opennetworking.org/sdn-resources/sdn-definition

Multi-Chassis Link Aggregation

● Compute servers are typically connected to 2 ToR
switches

● What if SDN ends at the switch ports?

https://upload.wikimedia.org/wikipedia/commons/2/2f/Using_Multi-Chassis_LAG_%28MC-LAG%29_for_High_Availability.png

Switch

Server

Example: Link failure

● Ctl implements L2
learning switch

● Srv_A uses link bonding
● Link between SW1 and

Srv_B fails
● Controller re-routes traffic
● … SW2 stops forwarding

– Why?

Srv_A

Srv_B

SW1 SW2

Ctl

Example: Link failure

● In-built src learning table
has same MAC from 2 ports
– And 'thinks' it is a loop

● One (not very clever)
solution:

Create fail-over
VLAN/VXLAN and fail-over
rules that push and pop

Srv_A

Srv_B

SW1 SW2

Ctl

V
LA

N

Example: Link failure

● When Ctl spans the
servers as well, fail-over
groups can be used

● Create fail-over group in
Srv-B

Srv_A

Srv_B

SW1 SW2

Ctl

V
LA

N

https://floodlight.atlassian.net/wiki/display/floodlightcontroller/How+to+Work+with+Fast-
Failover+OpenFlow+Groups#HowtoWorkwithFast-FailoverOpenFlowGroups-OpenFlowGroups

Srv_B

SDN: Data plane resilience: Path failures

● Again, depending on the size of the
domain, re-routing may be easy

● When path crosses domain borders,
BFD or Eth OAM is used

● Implementation in controller is
possible, but has low performance

https://events.nordu.net/display/ndn2012web/Ethernet+OAM+integration+in+OpenFlow

● Better use in-built hardware features of
commercial ASICs

Use of hardware features is difficult

● Complete knowledge of underlying pipeline is
required!

● c.f. TTP discussion
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-
specifications/openflow/OpenFlow%20Table%20Type%20Patterns%20v1.0.pdf

SDN: Data plane resilience: Node failures

● What to do when the switch is down?
– Replace it!

– In the meantime, re-route around the failed node (delete all
entries in the neighbor nodes)

● After replacement, how can the switch's state
be re-established?
– Address configuration

– Operating system

– Feature set

– Controller address

– Tunnels, fail-over groups, flowmods?

 ONIE - Open Network Install
Environment

● Combines a boot loader with a modern Linux kernel and BusyBox
● Provides an environment for installing any network OS
● Switch uses mgt network interface to dhcp
● Receives address of image server to fetch OS from

https://github.com/opencomputeproject/onie/wiki/Quick-Start-
Guide

Install the OS image via ONIE

BCM ASIC

BCM SDK/OF-DPA

OF endpoint (indigo)

OF controllerONIE

Retrieve controller address via
dhcp/salt/puppet/...

BCM ASIC

BCM SDK/OF-DPA

OF endpoint (indigo)

baseboxd

ONIE

Extend control over a domain of
switches

BCM ASIC

BCM SDK/OF-DPA
OF endpoint (indigo)

baseboxd

BCM ASIC

BCM SDK/OF-DPA
OF endpoint (indigo)

BCM ASIC

BCM SDK/OF-DPA
OF endpoint (indigo)

Shim OF controller
ONOS ODL

And finally, integration into
OpenStack

BCM ASIC

BCM SDK/OF-DPA
OF endpoint (indigo)

baseboxd

BCM ASIC

BCM SDK/OF-DPA
OF endpoint (indigo)

BCM ASIC

BCM SDK/OF-DPA
OF endpoint (indigo)

Shim OF controller
ML-2

neutron

Neutron rules
Create tenant
networks
 in switches

SDN: Data plane resilience: Node failures

● What to do when the switch is back up again?
– (In the meantime, controller re-routed around the failed switch)

● Controller needs to re-populate the switch's fwd
table

● This may involve re-calculating previously
embedded paths
– And re-populate the neighbor switches, as well

● It may be best to keep all state as high as
possible
– Re-calculate all routes from top to bottom.

SDN: Control plane resilience: controller link

● Assume a setting of switches and controllers
● Switches are connected to multiple controllers

(virtualization left aside here)
● The default role of a controller is

OFPCR_ROLE_EQUAL
– controller has full access to the switch
– receives all asynchronous messages (such as

packet-in, flow-removed)
– Can send commands to the switch

● In role OFPCR_ROLE_SLAVE
– the controllerhas read-only access to the switch.

By default, the controller does not receive switch
asynchronous messages, apart from Port-status
messages.

● Role OFPCR_ROLE_MASTER similar to EQUAL

SW1 SW2

Ctl
(SLAVE)

Ctl
(MASTER)

SDN: Control plane resilience: controller node

● Originally, OpenFlow controllers like NOX were
single points of failure
– With ONIX (Martin Casado, later Nicira, later

VmWare) controllers were split into a HA database
and stateless frontends.

– The concept of NIB (network information base) was
born:

http://yuba.stanford.edu/~casado/onix-osdi.pdf

ONOS, starting form Cassandra
(now using RAMCloud)

 Manager
 Component

 Manager
Component

 Provider
 Component

 Provider
 Component

 App
 Component

Listener

notify

command

command

sync & persist

add & remove

query &
command

 App
 Component

 Provider
 Component

 Manager
 Component

 Manager
Component

ProviderRegistry

Provider

ProviderService

ServiceAdminService

Listener

notify

register & unregister

command

command

sensing

add & remove

query &
command

Protocols

 Store Store

 Provider
 Component

ProviderRegistry

Provider

ProviderService

register & unregistersensing

Protocols

ServiceAdminService

 Store Store

sync & persist

ProviderRegistry ProviderRegistry

ProviderProvider

ProviderServiceProviderService

AdminService AdminServiceService Service

ListenerListener

https://docs.google.com/presentation/d/1pPOXPy4_KagPcrwgQOX332uZn7KXK
WfMEe7vNfhFDqo/edit?usp=sharing

RAMCloud

● Highly performant distributed key/value store
based on raft consensus algorithm

● Hierarchical consensus

RAMCloud stores all of its information in the main memories
of commodity servers, using hundreds or thousands of such
servers to create a large­scale storage system.

Because all data is in DRAM at all times, a RAMCloud can
provide 100­1000x lower latency than disk­based systems and
100­1000x greater throughput.

Although the individual memories are volatile, a RAMCloud
can use replication and backup techniques to provide data
durability and availability equivalent to disk­based
systems.

Open Network Operating System
(ONOS)

http://sdnhub.org/tutorials/onos/

Update on controllers and data bases

http://ravel-net.org/docs/SOSR16slide2.pdf
● Back to SQL for structured queries

– Performance??? Looks OK (few ms for rule update)
● Depends on the application

http://ravel-net.org/docs/SOSR16slide2.pdf

Resilience in NFV

NFVI failure
Covered by
OpenStack,
VmWare
– But my VNF is gone!

– Use cloud-init to
initially configure
VNF

– But dynamic state?

– How is this EMS
thing done?

This one is new compared to original NFV arch.
Is used for scaling in and out.

Resilience in NFV: Is my VNF up?

● NFV == OpenStack == KVM (at least until recently)

● VNF is a set of processes inside a VM
– VNF may be down, though the VM may still be running

– NFVI has no means to detect this!

● Can the „EMS“ find out? (original: element
management system)
– Constant monitoring required

– EMS turns into „service control plane“

Resilience in NFV: Moving state out

http://www.etsi.org/deliver/etsi_gs/NFV-INF/001_099/001/01.01.01_60/gs_nfv-inf001v010101p.pdf

Reinventing services: Micro-services

● Containers (docker, lxc) ideally run a
single process

● If process is done, container is down
● How is logging, monitoring etc. done?

– There are tools for docker.io that allow to collect
logging to stdout

– How would this be split up into services?

● Use service-specific logging, i.e.
integrate the control plane (“EMS”)

Reinventing Linux: CoreOS, systemd, etcd

● Systemd is a replacement for SysV init()
process
– Accepted by major Linux distros (Fedora, Ubuntu)

– Configuration of all services via /etc/systemd/…
directory

– Etcd (“/etc distributed”)
● Distributed KV store
● Raft consensus

– Fleet allows remote
steering of VNFs via etcd
and systemd

https://github.com/coreos/etcd

CoreOS worker set running etcd

● Workers can log and receive data and instructions
via /etc
– Example: central services manage pool of datapath ids for

switches, workers fetch a unique id before connecting to controller.

https://deis.com/blog/2016/coreos-overview-p2

Conclusions

● Resilience is preparation for loss of state
● General approach is to move out state to HA data

bases
● SDN controllers and NFV workers use the same

approach
● Re-designing NFVs to fit the model is essential,

otherwise NFV resilience requirements cannot be met
● Move out as much state as possible from switches and

NFVs
– Replace rather than repair

– In other words: treat switches and servers as cattle, not pets.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Terminology: SDN
	SDN: Software Defined Networks
	Slide 7
	Slide 8
	Network function virtualization
	So, how does SDN/NFV add value?
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

