### Dynamic Control for Failure Recovery and Flow Reconfiguration in SDN

Mathematical and Algorithmic Sciences Lab France Research Center

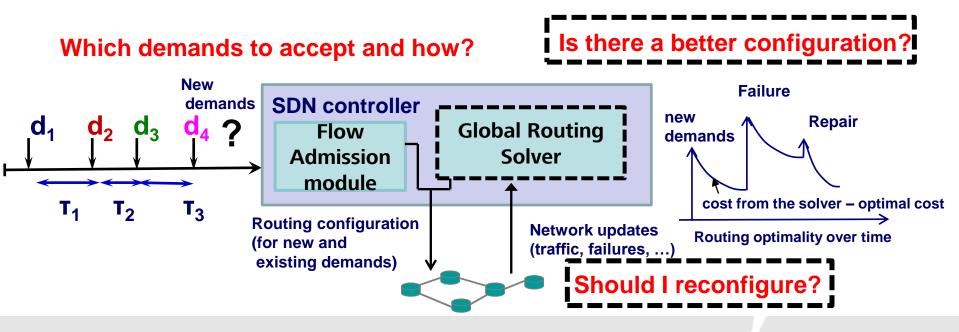
www.huawei.com

Stefano Paris, Georgios Paschos, Jérémie Leguay

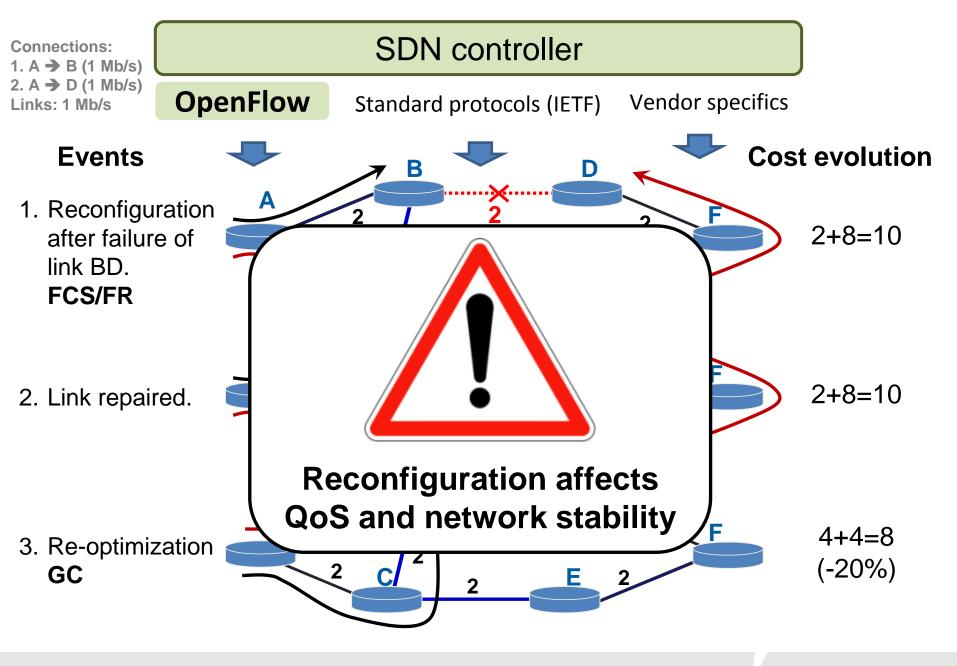


HUAWEI TECHNOLOGIES Co., Ltd.

# **Outline**







### Introduction

#### • Solving an evolving instance of an optimization problem

- Over time new events (demands arrive/depart, congestion/failures) change the network status.
- > Limited time to compute a feasible solution as the situation evolves.
- Trading off the optimality and network stability, as operators may want to allocate
   <u>a limited reconfiguration budget</u> to ensure stability.









### Introduction

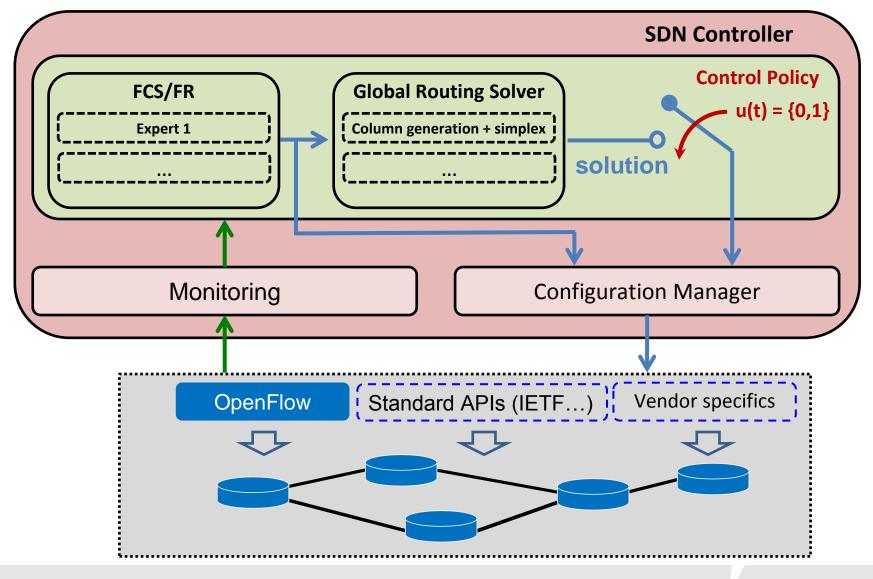
#### Fast connection setup / Fast Recovery (FCS/FR)

- > Single commodity minimum cost path
- > Fast but suboptimal

### Garbage collector (GC) → Global routing solver

- > Min cost multi-commodity flow
- > Optimal but slow
- > Iterative algorithm

#### • Dynamic control of the SDN controller


- > When reconfiguring the network
- Reconfiguration budget

HUAWEI TECHNOLOGIES CO., LTD.



Contribution

# **Control Framework For SDN Controllers**



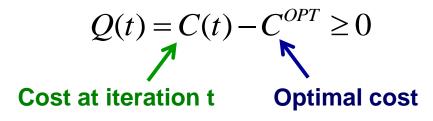
HUAWEI TECHNOLOGIES CO., LTD.



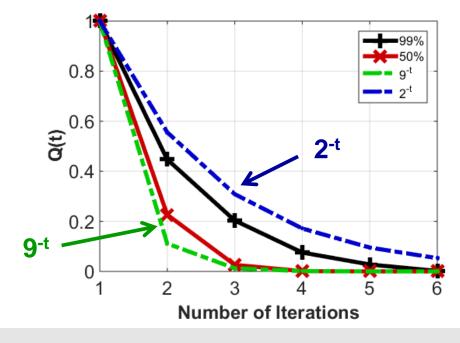
# Garbage Collector – Global Routing Solver

#### • Garbage Collector: an iterative solver to find optimal routing

- > Min cost multi commodity flow problem (splittable flow)
- > Iterative methods like column generation + simplex
- > Sequence of feasible solutions with diminishing returns


$$\begin{split} C^{OPT} &= \min \quad \sum_{e \in E} c_e y_e \quad \longleftarrow \text{Cost} \\ s.t & \sum_{p \in P_k} x_p = 1 \qquad \forall k \in K \quad \longleftarrow \text{Demand} \\ & \sum_{p \in P_e} \sum_{k: p \in P_k} d_k x_p \leq b_e y_e \quad \forall e \in E \quad \longleftarrow \text{Capacity} \\ & 0 \leq x_p \leq 1 \qquad \forall p \in P \\ & 0 \leq y_e \leq 1 \qquad \forall e \in E \end{split}$$

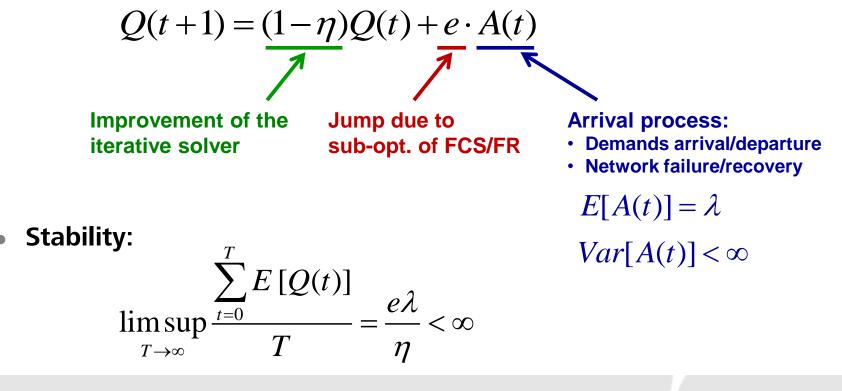
HUAWEI TECHNOLOGIES CO., LTD.




# **Modeling Optimality Gap**

• Optimality Gap (static scenario):



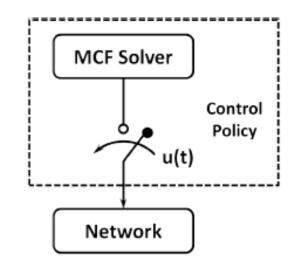

• Curve fitting obtained using Geant network and 500 trials





# **Modeling Optimality Gap**

- Optimality Gap (dynamic scenario):
  - > Arrival and departure of demands  $\rightarrow$  K(t): dynamic set of demands
  - > Network **failures** and **recovery**  $\rightarrow$  G(t) = (N(t), E(t)) dynamic topology
- Auto-regressive process of 1st kind

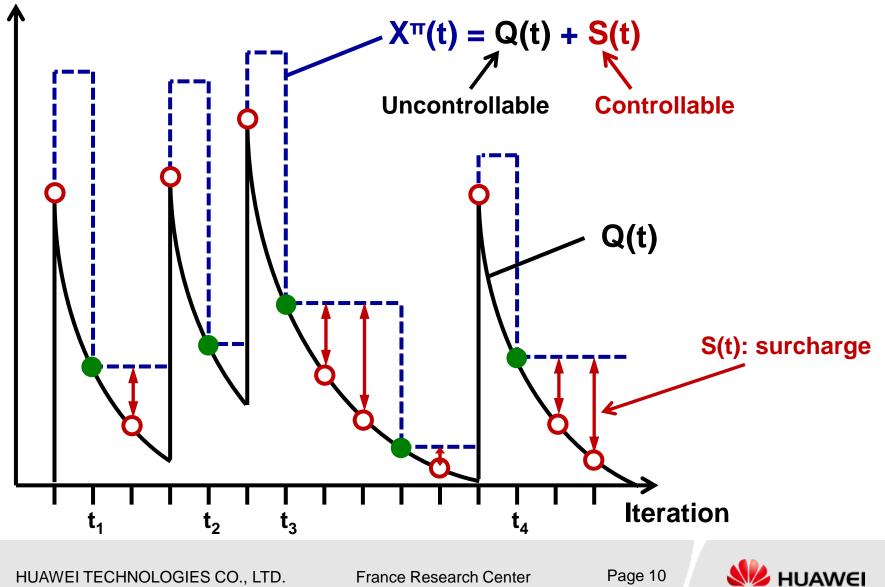





### **Control Policies**

#### • What if we do not want to reconfigure the network flows?

- > **R**<sub>max</sub>: maximum reconfiguration frequency
- > Compute a solution, but do not apply
- Control:
  - > u(t) = 1 (apply)
  - > u(t) = 0 (do not apply)




Operational cost of the control policy π

$$X^{\pi}(t+1) = \underbrace{[(1-\eta)Q(t)] \cdot u^{\pi}(t) + X^{\pi}(t) \cdot (1-u^{\pi}(t)) + e \cdot A(t)}_{\bigwedge}$$
  
Apply the flow configuration  
$$\xrightarrow{} \text{Operational cost accumulates}$$



### **Control Policies – Operational Cost**



HUAWEI TECHNOLOGIES CO., LTD.

France Research Center

Page 10

### **Control Policies – Stochastic Optimization**

• Number of reconfigurations at time t:

$$N_R^{\pi}(t) = \sum_{\tau=1}^t u^{\pi}(\tau)$$

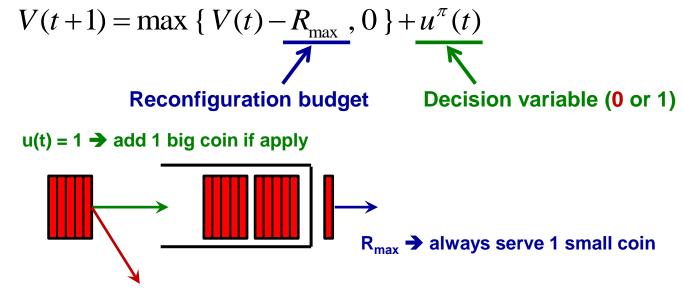
• Frequency of reconfigurations:

$$\overline{R}^{\pi} = \limsup_{t \to \infty} \frac{E[N_R^{\pi}(t)]}{t} = \limsup_{t \to \infty} \frac{E[\sum_{\tau=1}^{t} u^{\pi}(\tau)]}{t}$$

• Control Problem:

$$\min_{t \to \infty} \frac{\sum_{\tau=1}^{t} E[S^{\pi}(\tau)]}{t} \quad \longleftarrow \text{ Operational cost}$$
  
s.t.  $\overline{R}^{\pi} \leq R_{\max} \quad \longleftarrow \text{ Reconfiguration budget}$ 

HUAWEI TECHNOLOGIES CO., LTD.


France Research Center

Page 11



### **Control Policies – Virtual Queue**

• Virtual queue evolution (reconfiguration constraint)



 $u(t) = 0 \rightarrow do not add if not apply$ 

- Stability of the virtual queue → reconfig. constraint is satisfied
  - > Drift definition:

$$\Delta(t) = E[V^{2}(t+1) - V^{2}(t) | X^{\pi}(t), Q(t), V(t)]$$



### Control Policies – Drift-Plus-Penalty (DPP)

#### Minimization of the operational cost

> Penalty definition:

$$\delta(t) = E \left[ X^{\pi}(t+1) - Q(t+1) \right] X^{\pi}(t), Q(t), V(t)$$
Surcharge S(t)

• Minimization of the drift-plus-penalty metric

$$\begin{aligned} \Delta(t) + K\delta(t) &\leq u^{\pi}(t) \cdot [1 + 2V(t) - K(X^{\pi}(t) - Q(t+1))] \\ &+ f(R_{\max}, V(t), X^{\pi}(t), Q(t)) \end{aligned}$$

- > Minimizing the drift  $\rightarrow$  Satisfying reconfiguration constraint
- > Minimizing the penalty  $\rightarrow$  Minimizing the surcharge (operational cost)
- > Guarantee the stability of the virtual queue

HUAWEI TECHNOLOGIES CO., LTD.



## **Drift-Plus-Penalty (DPP) Policy**

• At each iteration t, select u(t) as follows:

$$u^{DPP}(t) = \begin{cases} 1 & V(t) < \frac{K \left( X^{DPP}(t) - Q(t+1) \right) - 1}{2} \\ 0 & otherwise \end{cases}$$

#### Simple policy

- > Evolution of the cost/optimality gap (estimation)
- > Evolution of the surcharge
- > Counter for the number of times u(t) = 1

### Initialization

- > K set arbitrarily large
- > V(0) = 2K



### Numerical Results – Simulator

#### • Fast Connection Setup / Fast Recovery (FCS/FR):

> Shortest path on the network with residual capacity.

#### • Iterative solver:

Column generation + simplex (splittable MCF)

#### • Three control policies:

> Drift Plus Penalty (DPP)

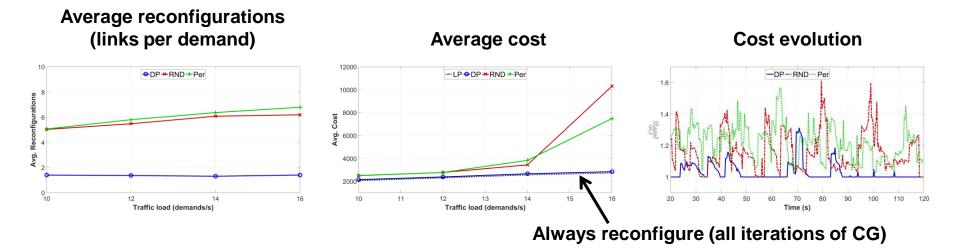
> Random (RND)  $\rightarrow u^{RND}(t) = 1$  with probability  $R_{max}$ 

Periodic (Per) 
$$\rightarrow u^{Per}(t) = 1 \text{ every } \frac{1}{R_{max}} \text{ time slots (iterations)}$$



### Numerical Results – Settings

- Geant as network topology:
  - > 22 nodes
  - > 36 links (40 Gbps)
- Events (demands and failures):


|                 | Demands                                                 | Failures                                           |
|-----------------|---------------------------------------------------------|----------------------------------------------------|
| Arrival process | Poisson<br>$\lambda = \{10, 12, 14, 16\} \text{ dmd/s}$ | Poisson<br>$\lambda = \{1, 1.2, 1.4, 1.6\}$ fail/s |
| Duration        | 10 s                                                    | 5 s                                                |
| Size            | [5;8] GB/s                                              | 1 link                                             |

• Reconfiguration budged  $\rightarrow$  R<sub>max</sub> = 0.2

HUAWEI TECHNOLOGIES CO., LTD.



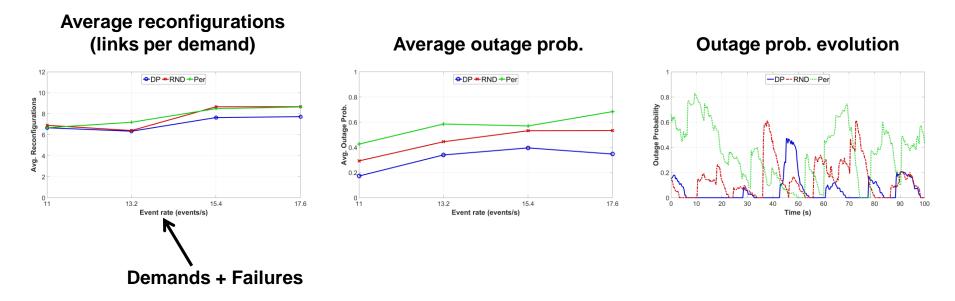
# Numerical Results – Without Failures



- DP is very close to always reconfiguring the network
  - > All iterations of CG: u(t) = 1 for all t

#### DP requires less reconfigurations over time

- > Less changes of the connections used for the demands
- Cost evolution almost ideal


HUAWEI TECHNOLOGIES CO., LTD.

France Research Center

Page 17



# Numerical Results – With Failures



- Outage probability: ratio of dropped demands at every iteration.
  - If a demand cannot be completely served, it is deactivated (high penalty in the LP). >
- DP uses the reconfiguration budget to increase the number of recovered connections



### Conclusion

#### • Proposition of a control framework for SDN controllers.

- > Decouple global routing solvers from dynamic control.
- > Flexible.

### • Definition of a Drift-Plus-Penalty policy

- > **\*Robust\*** against the relaxation of the model for Q(t) (AR model of the 1<sup>st</sup> kind).
- Dynamic threshold on the benefit that pays back a reconfiguration (simple yet better than static threshold/periodic/random policies)
- > **\*Easy\* to extend** (different classes of events).

### • Open questions:

- > Optimal policy unknown.
- > How to estimate Q(t).





### www.huawei.com



đ

HUAWEI TECHNOLOGIES CO., LTD.